
Automated Testing of Image Captioning Systems
Boxi Yu

221049024@link.cuhk.edu.cn

The Chinese University of Hong

Kong, Shenzhen

Shenzhen, Guangdong, China

Zhiqing Zhong

cheehingchung@gmail.com

South China University of Technology

Guangzhou, Guangdong, China

Xinran Qin

csqinxinran@mail.scut.edu.cn

South China University of Technology

Guangzhou, Guangdong, China

Jiayi Yao

120040070@link.cuhk.edu.cn

The Chinese University of Hong

Kong, Shenzhen

Shenzhen, Guangdong, China

Yuancheng Wang

119010319@link.cuhk.edu.cn

The Chinese University of Hong

Kong, Shenzhen

Shenzhen, Guangdong, China

Pinjia He
∗

hepinjia@cuhk.edu.cn

The Chinese University of Hong

Kong, Shenzhen

Shenzhen, Guangdong, China

ABSTRACT
Image captioning (IC) systems, which automatically generate a text

description of the salient objects in an image (real or synthetic), have

seen great progress over the past few years due to the development

of deep neural networks. IC plays an indispensable role in human

society, for example, labeling massive photos for scientific studies

and assisting visually-impaired people in perceiving the world.

However, even the top-notch IC systems, such as Microsoft Azure

Cognitive Services and IBM Image Caption Generator, may return

incorrect results, leading to the omission of important objects, deep

misunderstanding, and threats to personal safety.

To address this problem, we propose MetaIC, the first metamor-

phic testing approach to validate IC systems. Our core idea is that

the object names should exhibit directional changes after object

insertion. Specifically, MetaIC (1) extracts objects from existing

images to construct an object corpus; (2) inserts an object into an

image via novel object resizing and location tuning algorithms;

and (3) reports image pairs whose captions do not exhibit differ-

ences in an expected way. In our evaluation, we use MetaIC to test

one widely-adopted image captioning API and five state-of-the-

art (SOTA) image captioning models. Using 1,000 seeds, MetaIC

successfully reports 16,825 erroneous issues with high precision

(84.9%-98.4%). There are three kinds of errors: misclassification,

omission, and incorrect quantity. We visualize the errors reported

by MetaIC, which shows that flexible overlapping setting facilitates

IC testing by increasing and diversifying the reported errors. In

addition, MetaIC can be further generalized to detect label errors in

the training dataset, which has successfully detected 151 incorrect

labels in MS COCO Caption, a standard dataset in image captioning.

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ISSTA ’22, July 18–22, 2022, Virtual, South Korea
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9379-9/22/07. . . $15.00

https://doi.org/10.1145/3533767.3534389

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Metamorphic testing, testing, image captioning, AI software

ACM Reference Format:
Boxi Yu, Zhiqing Zhong, Xinran Qin, Jiayi Yao, YuanchengWang, and Pinjia

He. 2022. Automated Testing of Image Captioning Systems. In Proceedings
of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA ’22), July 18–22, 2022, Virtual, South Korea. ACM, New York,

NY, USA, 13 pages. https://doi.org/10.1145/3533767.3534389

1 INTRODUCTION
Image captioning (IC) systems aim to automatically generate a brief

depiction of the salient objects in an image (real or synthetic). In

recent years, the performance of IC systems [37, 41, 47, 78, 85, 90]

have improved significantly due to the rapid development of the

underlying deep neural networks, such as convolutional neural

networks (CNN) [32, 63] for image feature extraction and language

models [24, 36] for caption generation based on these features.

The SOTA IC models have reached or even surpassed human-level

performance (e.g., VIVO [37]) in terms of CIDEr score [77]. Thus,

IC systems have been increasingly integrated into our daily lives.

Typical examples include generating captions for massive social

media photos [3], visually-impaired people’s artificial intelligence

(AI) assistants [2, 58], and the acceleration of various manual im-

age labeling tasks [4]. Since 2016, the major IT companies (e.g.,
Google [4], Microsoft [5], and IBM [1]) have released and contin-

uously improved their own IC systems. The leading company of

Geographic Information System (GIS), Ersi, has integrated image

captioning into its famous GIS framework (e.g., Arcgis1) to generate
the captions for remote sensing images.

Despite its wide adoption in various applications, modern IC

system could return incorrect captions due to the complexity of

deep neural networks and the labeling errors in training datasets,

leading to the omission of important objects, deep misunderstand-

ing, and even threats to personal safety [58, 59, 66]. According to

the "report on vision" [60], more than 2.2 billion people around

the world have vision impairment and they are expected to benefit

1
https://developers.arcgis.com/python/guide/how-image-captioning-works/

https://doi.org/10.1145/3533767.3534389
https://doi.org/10.1145/3533767.3534389

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Boxi Yu, Zhiqing Zhong, Xinran Qin, Jiayi Yao, Yuancheng Wang, and Pinjia He

a group of elephants with a
person in a garment

a group of elephants
walking in a field

a couple of dogs running
on the beach.

a couple of dogs running on
the beach with two cows.

Figure 1: Examples of background images, generated images, and the corresponding captions. Words of salient objects are
marked in blue. Words indicating the violation of MetaIC’s MRs are marked in red.

greatly from AI-assistants in which IC is often a major compo-

nent [2, 58]. However, the embedded IC systems sometimes fail to

generate the correct captions [59], which make the AI-assistants

return misleading message to the visually-impaired users, posing

threat to their personal safety. An image of the former U.S. presi-

dent Barach Obama and his wife was captioned "a man in suit and

tie talking on a cell phone" [66], leading to misunderstanding and

potential negative social impact. Thus, assuring the reliability of IC

systems is an important endeavor.

There remains a dearth of automated testing methods for IC

systems because the problem is quite challenging. First, modern IC

systems are approaching human-level performance on the existing

human-labeled test sets. Thus, test sets of high quality are lacking.

Second, traditional code-based testing approaches [15, 64, 79] are

not suitable for testing IC systems because the logics of IC systems

are mainly encoded in the underlying neural networks with mil-

lions of complex parameters, rather the source code. Third, existing

testing approaches for computer vision (CV) tasks [74, 82] typically

assume simpler output formats (e.g., class labels), which cannot

work well in testing IC systems whose output (i.e., a sentence) is
significantly more complex; while existing testing approaches for

natural language processing (NLP) [33, 34, 70] tasks heavily rely on

the perturbation of chars or words in the input, which is infeasible

for IC systems whose input are images.

To tackle these challenges, we introduceMetaIC, a simple, widely-

applicable metamorphic testing methodology for validating IC sys-

tems. The input of MetaIC is a list of unlabeled images, while its

output is a list of suspicious issues, where each suspicious issue con-

tains a pair of images and their captions. The core idea of MetaIC is

that the object names should exhibit directional changes after object

insertion. We realize this idea by two metamorphic relations (MRs):

(1) object appearance: only the original objects and the inserted

objects should appear in the caption of the generated image; (2)

singular-plural form: both the original objects and the inserted ob-

jects should be illustrated by words of a proper singular-plural form.

Fig. 1 presents two suspicious issues returned by our approach. The

first issue was reported because the inserted bird was captioned

into a "person", violating the first MR; while the second issue was

reported because the noun "cow" was not in singular form, vio-

lating the second MR. Specifically, MetaIC automatically extracts

objects from images by Yolact++ [12], an advanced real-time image

segmentation technique. The extracted object will be inserted into

randomly selected images (i.e., background images). This is a chal-

lenging step because the inserted object should avoid affecting the

saliency of the existing objects, which has been tackled by our novel

object resizing and location tuning algorithms. The background

image and the newly generated image form an image pair. If the

captions of this image pair returned by the IC system violate any

of the MRs, the image pair and the corresponding captions will be

reported as a suspicious issue.

We apply MetaIC to test one paid IC service, i.e., Microsoft Azure

Cognitive Services [5] and five popular IC models, i.e., Show, Attend
and Tell [85], 𝑂𝑠𝑐𝑎𝑟𝐵 , 𝑂𝑠𝑐𝑎𝑟𝐿 [47], 𝑉𝑖𝑛𝑉𝐿𝐵 , 𝑉𝑖𝑛𝑉𝐿𝐿 [90]. MetaIC

successfully reports 16,825 erroneous issues in total with high pre-

cision of 84.9%-98.4%, revealing 17,380 captioning errors. The errors

include misclassification, omission, and incorrect quantity. To bet-

ter understand the reported errors, we visualize the attention masks

of the object, which helps us explore the potential root causes be-

hind. Furthermore, we adapt MetaIC to detect labeling errors in MS

COCO Caption, a widely-used standard IC dataset, which reports

151 incorrect labels in the training set, demonstrating MetaIC’s

wide applicability. The source code is also released for reuse [7]. In

summary, this paper makes the following main contributions:

• It introduces MetaIC, the first metamorphic testing method-

ology for validating image captioning systems.

• It describes a practical implementation of MetaIC by adapt-

ing Yolact++ [12] to extract objects and developing a new

object insertion technique that allows flexible insertion posi-

tion and overlapping area.

• It presents the evaluation of MetaIC that successfully reports

16,825 erroneous issues in one industrial IC service and five

SOTA ICmodels with high precision, and find a total number

of 17,380 captioning errors.

• It discusses the error categories found by MetaIC, the explo-

ration of root causes, and the potential of adapting MetaIC

to detect labeling errors in widely-used image captioning

datasets.

Automated Testing of Image Captioning Systems ISSTA ’22, July 18–22, 2022, Virtual, South Korea

A man and a boy in the room
(Image in real scene)

A man taking photo of a cow
(Synthetic image)

Figure 2: A real image, a synthetic image, and their captions.

2 PRELIMINARIES
In this section, we first explain the basic concepts that have been

used multiple times in the paper. Then we introduce two main-

stream image captioning models: CNN-RNN-Based IC and Vision-

Language Pre-Training IC.

2.1 Basic Concepts
Image captioning outputs a depiction of the salient objects in a given
image (real or synthetic), where salient objects refer to the most

noticeable object(s) in the image; and saliency reflects whether an

object is salient or not. For example, in Fig. 2, the two people are

salient objects in the real-scene image, and the man and the cow

are salient objects in the synthetic image. Each object has an object
class, such as "elephant" and "dog" in Fig. 1. In a caption returned

by IC software, a salient object is typically illustrated by a noun,

whose singular-plural form indicates whether the word is a singular

noun or a plural noun.

In this paper, we test one IC service and five IC models: Mi-

crosoft Azure API [5], Attention [85],𝑂𝑠𝑐𝑎𝑟𝐵 ,𝑂𝑠𝑐𝑎𝑟𝐿 [47],𝑉𝑖𝑛𝑉𝐿𝐵 ,

𝑉𝑖𝑛𝑉𝐿𝐿 [90]. Specifically, Microsoft Azure is short for Microsoft

Azure Cognitive services [5] and Attention is short for Show, Attend

and Tell [85]. 𝑂𝑠𝑐𝑎𝑟𝐵 and 𝑉𝑖𝑛𝑉𝐿𝐵 refer to the IC models adopting

the base version of BERT [24], while𝑂𝑠𝑐𝑎𝑟𝐿 and𝑉𝑖𝑛𝑉𝐿𝐿 adopt the

large version.

2.2 Modern Image Captioning Systems
Recently, there are two main lines of IC research: CNN-RNN-Based

IC [78, 85] and Vision-Language Pre-Training (VLP) IC [37, 47,

90, 92]. They both adopt a two-stage framework, using CNNs for

feature extraction in the first stage and sequence models caption

generation in the second stage. Differently, VLP IC adopts pre-

trained models in the second stage, which makes them more ef-

ficient and accurate than CNN-RNN-Based IC. In particular, the

SOTA VLP IC model VIVO [37] claims that it surpasses human in

CIDER score [77]. In the following, we elaborate more on these two

lines of research.

2.2.1 CNN-RNN-Based ICs. CNN-RNN-Based IC uses a CNN as

the feature extractor and an RNN to generate the captions. Specif-

ically, CNN can produce rich representation of an image by em-

bedding it into a fixed-length vector and the representation has

been used in various CV tasks [68]. Inspired by the great successes

of sequence generation in machine translation [10, 22, 71], RNN

models [41, 78, 85] have been adopted in caption generation in

CNN-RNN-Based IC. Attention [85] first introduces an attention

mechanism to image captioning and visualize how the model at-

tends on the salient objects in an image during captioning. By using

a lower convolutional layer rather than fully connected layers in

the encoder, the RNN decoder of this method can focus on the

most important parts of the image by calculating weights from the

feature vectors. As for the second stage, it adopts LSTM [36] for

caption generation.

2.2.2 Vision-Language Pre-Training ICs. VLP ICs also adopts a two-

stage pipeline. Differently, they employ more advanced CNNs in

the first stage and BERT [24] in the second stage. With a multi-

layer bidirectional Transformer [76] as its architecture, BERT uses

masked language models to enable pre-trained deep bidirectional

representations, which effectively alleviate the extensive manual

effort on building task-specific architectures.

Oscar [47] first adopts object tags detected in images as anchor

points, which strengthens the learning of semantic alignments

between images and texts and significantly enhance its ability to

learn the cross-modal representations. Recently, Zhang et al. [90]
propose VinVL, which uses a CNN specially tailored for vision-

language tasks. This CNN is pre-trained on a much larger text-

image corpora, thus it can capture much more abundant visual

features accurately, outperforming other models.

3 APPROACH AND IMPLEMENTATION
This section introduces MetaIC and its implementation details. In-

spired by the goal of IC that the salient objects in an image should

be captioned properly, the core idea of MetaIC is: the object names

should exhibit directional changes after object insertion. The input

of MetaIC is a list of unlabeled images and the output is a list of

suspicious issues, where each issue contains the original image, a

generated image with an inserted object, and their corresponding

captions returned by the IC software under test. Fig. 3 illustrates

the overview of MetaIC, which carries out the following four steps:

(1) Object extraction. We extract salient objects from an exist-

ing dataset by an instance segmentation algorithm, which

collectively form an object pool.

(2) Object insertion. For each unlabeled image (i.e., background
image), we randomly select an image (i.e., object image) from

the object pool and insert it into the background image via

novel object resizing and location tuning algorithms.

(3) Caption collection. We collect the captions for the background

image and the generated image from the IC system under

test.

(4) Error detection. We focus on the key constituents in the two

captions and report a suspicious issue if the captions violate

at least one of our MRs.

3.1 Object Extraction
To realize object insertion, we need to prepare a pool of object

images. Thus, the first step of MetaIC is to extract object images

from an image dataset. Although object extraction has long been

a challenging task, deep learning-based object segmentation mod-

els [12, 13, 31, 48] provide a feasible solution because these models

can extract high-quality objects efficiently.

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Boxi Yu, Zhiqing Zhong, Xinran Qin, Jiayi Yao, Yuancheng Wang, and Pinjia He

Object
Extraction

Object Source Images Object Pool

Background Images

+

Object Resizing
&

Location Tuning

Paste

Synthesized Images

Background Images

Caption
Collection

Caption pair

Error
Detection

Randomly
Select

Randomly
Select

Object
Image

A giraffe in a
field
A cow next to a
giraffe in a field

Figure 3: Overview of MetaIC.

In our implementation, we adopt Yolact++ [12], the SOTA real-

time object segmentation method because it achieves decent perfor-

mance in terms of both precision [31, 48] and efficiency [12, 13, 75].

Yolact++ predicts mask prototypes and per-instance mask coeffi-

cients in parallel, and linearly combines them to form the final

instance masks. Thus, Yolact++ model can achieve 34.1 mAP on

MSCOCO [51] at 33.5 fps while keeping the close performance of

the SOTA approaches. As shown in Fig. 4, Yolact++ generates the

masks and identifiers of the airplanes in the images, based on which

we can extract the objects accordingly and put them into a certain

category (e.g., airplane).

Airplanes in images Masks and identifiers Airplane catergory

Figure 4: An example of object extraction via Yolact++.

3.2 Object Insertion
Once we have constructed an object pool, we randomly select an

object image (e.g., the cow in Fig. 3) from the pool and insert it into a

random background image. In this process, we need to address three

main issues: (1) how to resize the object image to avoid being too big

or too small compared with the salient objects in the background

image; (2) how to find a suitable location for insertion; and (3)

how to allow reasonable overlap between the object image and the

original objects in the background image. In the following, we will

introduce our specially-design object resizing and location tuning

algorithm and how these algorithms provide us with the flexibility

of overlapping area configuration.

3.2.1 Object resizing. The goal of object resizing is to resize the

object image from the original size (ℎ,𝑤) to a new size (ℎ′,𝑤 ′),
where ℎ and ℎ′ refer to their heights and 𝑤 and 𝑤 ′ refer to their

widths. MetaIC is based on the assumption that the inserted object

is a salient object and it should not affect the saliency of the objects

in the background image. Thus, the resized object image should not

be too small nor too big. Our object resizing algorithm is illustrated

by Fig. 5. To figure out the feasible (ℎ′,𝑤 ′), we first determine the

area size 𝑠 ≈ ℎ′ × 𝑤 ′ by randomly selecting a value from range

[𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥], where 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥 are calculated as follows:

𝑆𝑚𝑖𝑛 = 𝛼 ∗ 𝑆 (𝑏)
𝑆𝑚𝑎𝑥 = 𝛽 ∗ 𝑆 (𝑏) (1)

𝛼 and 𝛽 are hyper-parameters that we manually set based on em-

pirical experience; 𝑆 (𝑏) is a normalized value that reflects the area

size of the objects in the background image. Specifically, 𝑆 (𝑏) is
calculated by 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 function as follows:

𝑆 (𝑏) =
𝑁∑︁
𝑖=1

(𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑎𝑖
𝑠𝑏
) ∗ 𝑎𝑖)

𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑥𝑖) =
𝑒𝑥𝑖∑𝑁
𝑗=1 𝑒

𝑥 𝑗

(2)

where 𝑎𝑖 is the area size of the 𝑖-th original objects in the back-

ground image 𝑏; 𝑠𝑏 is the area size of 𝑏; 𝑁 is the number of objects

in 𝑏. After randomly selecting an area size 𝑠 from the interval

[𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥], we calculate (ℎ′,𝑤 ′) as follows:

(ℎ′,𝑤 ′) = (ℎ ∗
√︂

𝑠

ℎ ∗𝑤 ,𝑤 ∗
√︂

𝑠

ℎ ∗𝑤)
(3)

We denote 𝑎𝑚𝑎𝑥 as the area size of the largest object in 𝑏. Em-

pirically when
𝑎𝑚𝑎𝑥

𝑠𝑏
< 40%, we set 𝛼 , 𝛽 as 0.8 and 1.3, respectively;

otherwise, we set 𝛼 , 𝛽 as 0.1 and 0.37, respectively.

𝒂𝟏
𝒂𝟐 𝒂𝟑

Calculate 𝑆(𝑏) 𝑆(𝑏)

𝛼 ∗ 𝑆(𝑏) 𝛽 ∗ 𝑆(𝑏)

(b) Area size interval: [𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥](a) Background image

Figure 5: An example of object resizing.

3.2.2 Location tuning. After resizing the object image, we need

to select suitable locations in the background image for object in-

sertion. MetaIC provides a flexible setting on the overlapping ratio

between the inserted object and objects in the background image.

Specifically, MetaIC can generate 𝑛 images with different overlap-

ping ratios, which are randomly selected from 𝑛 ratio intervals

Automated Testing of Image Captioning Systems ISSTA ’22, July 18–22, 2022, Virtual, South Korea

given a maximum overlapping ratio 𝑟𝑎𝑡𝑖𝑜𝑚𝑎𝑥 . The intervals for the

overlapping ratios are calculated as follow:

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 =

{
[0] if 𝑖 = 0

(𝑟𝑎𝑡𝑖𝑜𝑚𝑎𝑥

𝑛−1 ∗ (𝑖 − 1), 𝑟𝑎𝑡𝑖𝑜𝑚𝑎𝑥

𝑛−1 ∗ (𝑖)] if 𝑖 > 0

(4)

For example, if we set 𝑟𝑎𝑡𝑖𝑜𝑚𝑎𝑥 = 0.45 and 𝑛 = 4, we will have

four intervals: i.e., [0], (0, 0.15], (0.15, 0.3], (0.3, 0.45]), where "[0]"
indicates that the inserted object should not overlap with any of the

objects in the background image. The overlapping ratio between

two objects is the overlapping ratio between the bounding boxes of

the inserted object and that of the objects in the background image.

Specifically, the overlapping ratio 𝑂 𝑗 is defined as:

𝑂 𝑗 =
𝐴 𝑗 ∩𝐴𝑜𝑏 𝑗

𝐴 𝑗
, (5)

where 𝐴 𝑗 is the region of the 𝑗-th object in the background image,

𝐴𝑜𝑏 𝑗 is the region of the inserted object 𝑜𝑏 𝑗 .

For each of the ratio intervals, MetaIC generates one synthetic

image by selecting a location (𝑥,𝑦) for object image insertion, lead-

ing to overlapping ratio 𝑂 𝑗 within the interval for all the objects.

To ensure the overlapping ratio while keeping the saliency of the

original objects, MetaIC requires: (1)𝑂 𝑗 should be in the ratio inter-

val if the 𝑗-th object is the largest object in the background image

(Rule 𝑅1); (2) otherwise,𝑂 𝑗 should be less than or equal to the upper

bound of the ratio interval Rule 𝑅2.

It is challenging to select suitable positions that obeys rules

𝑅1 and 𝑅2 in an efficient manner because there could be multiple

objects in a background image, where each poses an overlapping

constraint according to the rules. To tackle this challenge, we de-

velop a two-step algorithm. We first search a suitable coordinate for

object insertion that allows an overlapping ratio in 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑛−1, e.g.,
(0.3, 0.45] when 𝑟𝑎𝑡𝑖𝑜𝑚𝑎𝑥 = 0.45 and 𝑛 = 4. Then we searches the

suitable positions for other ratio intervals only along a line instead

of all possible positions. Alg. 1 presents pseudo-code.

Step 1: We randomly choose a coordinate (𝑥𝑛−1, 𝑦𝑛−1) in the

background image for object insertion for 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑛−1 , and check if
it obeys 𝑅1 and 𝑅2 (line 3-7). If not, MetaIC calculates a new image

size using our image resizing technique, generates a new coordinate

(𝑥,𝑦) randomly, and check its compliance with 𝑅1 and 𝑅2 again. We

keep generating new image sizes and coordinates until they obey

𝑅1 and 𝑅2 or we try 𝑐1 times, where 𝑐1 is a pre-defined threshold

(line 7-11).

Step 2: After calculating the coordinate (e.g., point 𝑆 in Fig. 6 (a))

for 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑛−1, we continue to search for the object insertion coor-

dinates under the remaining ratio intervals. Instead of utilizing the

strategy in step-1 to find a new coordinate, which is time-consuming,

we search the coordinate along a line. We denote the centroid coor-

dinate of the largest object in background image as (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥),
which is point𝐴 in Fig. 6 (a) (line 17). We construct a line 𝐿 (red lines

in Fig. 6) by connecting point (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) and point (𝑥𝑛−1, 𝑦𝑛−1)
and extend the line to point (𝑥𝑏𝑜𝑢𝑛𝑑 , 𝑦𝑏𝑜𝑢𝑛𝑑) (point 𝐵 in Fig. 6 (a)),

where (𝑥𝑏𝑜𝑢𝑛𝑑 , 𝑦𝑏𝑜𝑢𝑛𝑑) is the farthest coordinate on 𝐿 keeping the

inserted object inside the background image. MetaIC then employs

binary search to find a suitable coordinate that obeys the rules 𝑅1
and 𝑅2 along the line (line 18). Fig. 6 (b), (c), (d) demonstrate an

example of the binary search process along the line when MetaIC

intends to find a suitable coordinate for ratio interval (0, 0.15]. In

(a) Determine the search interval (b) The first search

(c) The second search (d) Finally find the location

1

2 3

0%

17% 10%

Search
interval

S

B

A

Figure 6: An example of our location technique.

the first search, it gets an overlapping ratio that equals to 0% which

is too small. Then it performs the second search and gets the over-

lapping ratio that equals to 17%, which violates 𝑅1. Finally, we find

coordinate (𝑥1, 𝑦1) that satisfies 𝑅1 and 𝑅2 for the ratio interval. We

could see that the saliency of the cat is not affected by the inserted

dog after insertion. For each ratio interval, we allows at most 𝑐2
"jumps" in the binary search, where 𝑐2 is a pre-defined threshold. If

we cannot find a suitable position for the interval, we will randomly

select a new image and starts from step-1 again.

Algorithm 1 An implementation of location tuning

Input: the background 𝑏, a list of object candidates 𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 , number of

overlapping ratios 𝑛, the max overlapping ratio 𝑟𝑎𝑡𝑖𝑜𝑚𝑎𝑥 , resizing interval

parameters 𝛼 and 𝛽 , patience parameters 𝑐1 and 𝑐2

Output: a size for the inserted object, and a list of locations for controlling

different overlapping ratios

1: 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑙𝑖𝑠𝑡 ← 𝐿𝑖𝑠𝑡 () ⊲ Initialize with empty list

2: for 𝑜𝑏 𝑗 in 𝑜𝑏 𝑗𝑒𝑐𝑡𝑠 do
3: 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑚𝑎𝑥 ← RandomCoordinate()

4: 𝑂𝑏 𝑗𝑁𝑒𝑤𝑆𝑖𝑧𝑒 ← RandomSize(𝛼 , 𝛽 , 𝑜𝑏 𝑗 , 𝑏)

5: 𝑜𝑏 𝑗 ← Resize(𝑜𝑏 𝑗 ,𝑂𝑏 𝑗𝑁𝑒𝑤𝑆𝑖𝑧𝑒)

6: 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒1 ← 0

7: while 𝑅1 is False or 𝑅2 is False for 𝑟𝑎𝑡𝑖𝑜𝑚𝑎𝑥 do ⊲ Step 1

8: if 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 > 𝑐1 then
9: break

10: 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑚𝑎𝑥 ← RandomCoordinate()

11: 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒1+ = 1

12: for i in range(0,n-2) do ⊲ Step 2

13: 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒2 ← 0

14: while 𝑅1 is False or 𝑅2 is False for 𝑟𝑎𝑡𝑖𝑜𝑖 do
15: if 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒 > 𝑐2 then
16: break

17: 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ← Coordinate(LargestObjOf(b))

18: 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑖 ← BinarySearch(𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 , Boundary(b))

19: 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒2+ = 1

20: 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑙𝑖𝑠𝑡 .append(𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑖)

21: if 𝐿𝑒𝑛𝑔𝑡ℎ (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑙𝑖𝑠𝑡) == 𝑛 then
22: break

23: return𝑂𝑏 𝑗𝑁𝑒𝑤𝑆𝑖𝑧𝑒 , 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑙𝑖𝑠𝑡

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Boxi Yu, Zhiqing Zhong, Xinran Qin, Jiayi Yao, Yuancheng Wang, and Pinjia He

3.3 Caption Collection
After object insertion, MetaIC constructs image pairs, where each

pair contains the background image and a corresponding synthetic

image. These images will be input to the IC system under test and

the returned captions will be collected. In this paper, we test one

paid IC service, i.e., Microsoft Azure Cognitive Services [5], and

five popular IC models, i.e., Attention [85], 𝑂𝑠𝑐𝑎𝑟𝐵 , 𝑂𝑠𝑐𝑎𝑟𝐿 [47],

𝑉𝑖𝑛𝑉𝐿𝐵 , 𝑉𝑖𝑛𝑉𝐿𝐿 [90]. For the paid IC service, we invoke the API

provided by Microsoft Azure Cognitive Services [5]. For the IC

models, we use the open-source code provided by the authors and

train our own IC models following the exact description in the

original papers.

3.4 Error Detection
After caption collection, MetaIC inspects the captions of every

image pair and reports them as a suspicious issue if they violate

our metamorphic relations (MRs). MetaIC provides two MRs.

MR1. We denote the IC system as 𝐼 , the background image as 𝑏,

the generated image as 𝑖 ′, the inserted object as 𝑜𝑏 𝑗 , the caption

pair produced by 𝐼 are 𝐼 (𝑏) and 𝐼 (𝑖 ′). MR1 is defined as follows:

𝑆𝑒𝑡 (𝐼 (𝑖 ′)) == 𝑆𝑒𝑡 (𝐼 (𝑏)) ∪ {𝑜𝑏 𝑗}, (6)

where 𝑆𝑒𝑡 (𝐼 (𝑖 ′)) denotes the set of object classes in 𝐼 (𝑖 ′), 𝑆𝑒𝑡 (𝐼 (𝑏))
indicates the set of object classes in 𝐼 (𝑏).

MR2.We use a function 𝐹∗ (𝑦) to denote the singular-plural form
of an object class 𝑦 in caption 𝐼 (∗), indicating whether the object
class 𝑦’s form is singular or plural. For example, 𝐹𝑏 (𝑑𝑜𝑔) is the
singular-plural form of “dog" class in the caption of background

image 𝑏.𝐶 denotes the object classes in both 𝐼 (𝑏) and 𝐼 (𝑖 ′); 𝑐𝑘 is the

𝑘-th object class in 𝐶 . If the inserted object 𝑜𝑏 𝑗 is not in 𝑆𝑒𝑡 (𝐼 (𝑏)) ,
MR2 requires:

𝐹𝑏 (𝑐𝑘) = 𝐹𝑖′ (𝑐𝑘),
𝐹𝑖′ (𝑜𝑏 𝑗) = 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 .

(7)

If the inserted object 𝑜𝑏 𝑗 is in 𝑆𝑒𝑡 (𝐼 (𝑏)), we consider𝐶 ′ = 𝐶 \{𝑜𝑏 𝑗},
where 𝑐 𝑗 is the 𝑗-th object class in𝐶 ′. Then the second MR requires:

𝐹𝑏 (𝑐 𝑗) = 𝐹𝑖′ (𝑐 𝑗),
𝐹𝑖′ (𝑜𝑏 𝑗) = 𝑝𝑙𝑢𝑟𝑎𝑙 .

(8)

If any of the two MRs are violated, the original image, the gener-

ated image, and the corresponding captions will be reported as a

suspicious issue.

In our implementation, we mark up the word in caption accord-

ing to a particular part of speech (POS) via a POS tagging tool, i.e.,
XPOS [56]. We extract words from the captions whose POS are NN

or NNS, corresponding to singular noun or plural noun, respectively.

Then we can obtain the a set containing all the object classes in a

caption, and construct the mapping for function 𝐹 which assigns

the singular-plural form to the object class in the set.

4 EVALUATION
4.1 Experimental Setup and Dataset
4.1.1 Experimental environments. All experiments are run on a

Linux workstation with an 8 core AMD Ryzen 5800X 4.8GHz Pro-

cessor, 64GB DDR4 2666MHz Memory, and GeForce RTX 3090 GPU.

The Linux workstation is running 64-bit Ubuntu 20.04.2 LTS with

Linux Kernel 5.11.0. For POS tagging, we use the XPOS implemented

in Stanza,
2
an NLP Package powered by Stanford NLP Group.

4.1.2 Dataset. To show that MetaIC can work effectively on differ-

ent image sources, we collect object source images from Flickr [6]

and background images from MS COCO Caption [21], a standard

dataset in image captioning field. For MS COCO Caption Dataset,

we focus on the images whose class names are single words (60 out

of 80) because the POS tagging technique can only assign POS to

single words. It only requires decent engineering effort to general-

ize MetaIC to class names containing multiple words. All the code

and datasets in this paper will be open-source.

4.2 Precision
MetaIC automatically reports suspicious issues, where each issue

contains a pair of images and their captions (𝐼 (𝑏), 𝐼 (𝑖 ′)). Therefore,
the effectiveness lies in how precise the reported issues are. In

this section, we try to answer the following question: how many

of the reported issues contain real captioning errors. We test one

well-known IC API: Microsoft Azure API, and five IC models: At-

tention [85], 𝑂𝑠𝑐𝑎𝑟𝐵 , 𝑂𝑠𝑐𝑎𝑟𝐿 [47], 𝑉𝑖𝑛𝑉𝐿𝐵 , 𝑉𝑖𝑛𝑉𝐿𝐿 [90]. In this

experiment, we set 𝑟𝑎𝑡𝑖𝑜𝑚𝑎𝑥 = 45% and 𝑛 = 4 to balance the diver-

sity of the test cases (in terms of the overlapping ratio) and the test

case quality. We believe this parameter setting can be used in other

datasets in general because the MS COCO Caption contains di-

verse images (different sizes and salient objects). We use MetaIC to

randomly generate 1,000 background-object pairs from MS COCO

Caption and our object corpus, and construct 1,000 synthesized

images for every overlapping ratio interval. After synthesizing the

images, we obtain 4,000 image pairs (𝑏, 𝑖 ′). We collect 4,000 caption

pairs (𝐼 (𝑏), 𝐼 (𝑖 ′)) from each of the IC systems under test. Based on

these caption pairs, MetaIC returns a list of suspicious issues.

We are the first to test IC systems so there are no available base-

lines. Intuitively, the metamorphic testing techniques for simpler

tasks that also take images as input could be adapted to testing IC

systems. Thus, we adopt Deeptest [73], a metamorphic testing tech-

nique for image classifier in our precision experiment. Specifically,

we use four image transformations in Deeptest (blur, brightness,

contrast, shear) and check whether the image pair share the same

caption. We use the same background images as the experiment

setting of MetaIC to synthesize 4,000 image pairs (𝑏, 𝑖 ′), and collect
4,000 caption pairs (𝐼 (𝑏), 𝐼 (𝑖 ′)) from the IC systems.

To verify the results, two authors manually inspect all the suspi-

cious issues separately following the instructions on data labeling in

MS COCO paper [21], including "Describe all the important parts of

the scene", "Do not describe things that might have happened in the

future or past", etc. During this manual analysis, all disagreements

were discussed until a consensus was reached. The results of this

phase have a Cohen’s kappa of 0.822, showing a substantial-level

of agreement [57].

4.2.1 Evaluation Metric. If the caption pair 𝑝 = (𝐼 (𝑏), 𝐼 (𝑖 ′)) is
reported as suspicious issue, and 𝐼 (𝑏) or/and 𝐼 (𝑖 ′) contains cap-
tioning error(s), then we set 𝑒𝑟𝑟𝑜𝑟 (𝑝) to be true, otherwise we set

𝑒𝑟𝑟𝑜𝑟 (𝑝) to be false. Given a list of suspicious issues, the precision

2
https://stanfordnlp.github.io/stanza/

Automated Testing of Image Captioning Systems ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Table 1: Precision (true positives/suspicious issues) of Deeptest [73] and MetaIC on one paid API and five models.

Blur Brightness Contrast Shear 0% 15% 30% 45%

Attention 35.0% (185/528) 37.9% (120/317) 37.2% (196/527) 41.1% (245/596) 98.0% (948/967) 97.7% (937/959) 98.4% (948/963) 98.2% (948/965)

OscarB 20.2% (127/630) 14.7% (38/258) 18.4% (96/521) 21.4% (119/555) 91.3% (652/714) 91.4% (637/697) 91.2% (667/731) 92.2% (694/753)

OscarL 19.8% (121/610) 12.9% (36/279) 17.4% (91/522) 18.5% (100/542) 92.3% (624/676) 91.7% (620/676) 91.2% (625/685) 91.6% (647/706)

VinVLB 34.2% (207/606) 26.2% (113/431) 29.1% (167/574) 28.6% (185/646) 88.0% (563/640) 87.3% (552/632) 88.4% (571/646) 88.5% (598/676)

VinVLL 21.8% (131/602) 16.5% (60/363) 16.9% (98/579) 19.3% (113/586) 86.7% (535/617) 86.0% (535/622) 84.9% (535/630) 85.1% (560/658)

Microsoft Azure API 39.8% (181/455) 41.2% (56/136) 41.2% (163/396) 38.6% (197/511) 96.6% (858/888) 96.1% (852/887) 96.5% (859/890) 97.4% (860/883)

MetaIC (Overlapping Ratio)
IC Systems

Deeptest (Perturbation Method)

is calculated by:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑
𝑝∈𝑃 𝑒𝑟𝑟𝑜𝑟 (𝑝)
|𝑃 | , (9)

where 𝑃 are the suspicious issues reported by MetaIC and |𝑃 | is the
number of the suspicious issues.

4.2.2 Results. The results are presented in Table 1, the precision of

MetaIC and Deeptest [73] on one API and fivemodels. The precision

of MetaIC ranges from 84.9% to 98.4%, while Deeptest’s precision

ranges from 12.9% to 41.2%. Specifically, MetaIC achieves a precision

of (96.1%-97.4%) on Microsoft Azure API, and a precision of (84.9%-

98.4%) on the five IC models. The results demonstrate that MetaIC is

much more precise in testing IC systems than existing metamorphic

testing techniques for systems that also take images as input. In

addition, MetaIC reports much more erroneous issues. Specifically,

MetaIC reports 535 to 948 erroneous issues, while Deeptest reports

36 to 245. MetaIC successfully report 16,825 erroneous issues, which

contains a total number of 17,380 captioning errors. Specifically,

out of the 16,825 erroneous issues reported, 120 issues are reported

because of captioning errors in the original images. Note that the

comparison between MetaIC and Deeptest is not apple-to-apple as

Deeptest was originally designed for testing image classifiers.We re-

gards Deeptest as a baseline here for the completeness of discussion.

The images synthesized by MetaIC are diverse. From the table, we

can observe that MetaIC consistently achieves high precision under

different overlapping ratios, showing the effectiveness of our object

resizing and location tuning algorithms. For example, when we use

MetaIC to test the Microsoft Azure API [5], the precision values

for {𝑟𝑎𝑡𝑖𝑜0, 𝑟𝑎𝑡𝑖𝑜1, 𝑟𝑎𝑡𝑖𝑜2, 𝑟𝑎𝑡𝑖𝑜3} are {96.6%, 96.1%, 96.5%, 97.4%},
respectively.

4.2.3 False positives. To further understand the results, we cate-

gorize the false positives of MetaIC and discuss the prospective

solutions for them. Although MetaIC achieves very high precision

in our evaluation, we still encounter some false positives. We man-

ually inspect the false positives and present three typical examples

in Fig. 7. First, after inserting a bird into the background image, the

caption describes the "bird" as "parrot", which is correct because

parrots are subspecies of birds. However, our class set does not

contain "parrot", leading to a false positive. Second, after inserting a

cow into the background image, the depiction of the person changes

from "person" to "woman". A dictionary containing more object

types can effectively reduce these two kinds of false positives. Third,

"a pair of scissors" is regarded as an incorrect singular-plural form

of "scissors" by our method, while in modern English, the word

"scissors" has no singular form, leading to the false positive. In the

future, adopting a more advanced POS tagging tool or maintaining

a dictionary of words of special singular-plural form can help.

a brown horse standing in a field
with mountains.

𝒓𝒂𝒕𝒊𝒐𝟎

a horse with a parrot on its
back standing in a field.

bg

a woman sitting in the snow next
to a cow.

a person sitting in the snow
with a snowboard.

a park bench sitting in a garden

a park bench sitting in a
garden with flowers.

a pair of scissors sitting on top of a
bench.

Figure 7: False positives reported by MetaIC.

4.3 Erroneous Captions
MetaIC is capable of finding three kinds of captioning errors:

• Classification error is an error that IC systems provide an

incorrect class name for an object, for instance, an erroneous

caption depicts an airplane as a skateboard.

• Recognition error is an error that IC systems omit the

description of a salient object in the image.

• Single-plural error is an error that IC systems return the

incorrect singular-plural form of an noun in the caption. For

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Boxi Yu, Zhiqing Zhong, Xinran Qin, Jiayi Yao, Yuancheng Wang, and Pinjia He

a group of horses stand in a grassy field
(omission of the dog)

a herd of zebra standing on top of a lush
green field. (omission of the sheep)

a group of elephants and two bears in a field
(wrong singular-plural form of the elephant)

a herd of elephants standing in a field with
bananas (wrong singular-plural form of
the banana)

a person in a garment sitting on a bench
(misclassify the bird as the person)

a couple of zebra standing next to each
other. (misclassify the sheep as the zebra)

a person sitting on top of a snow covered
slope. (omission of the cake)

a couple of birds that are on some grass.
(misclassify the elephant as the bird)

a dog is standing next to a fire hydrant.
(wrong singular-plural form of the dog)

Figure 8: Examples of captioning errors reported by MetaIC.

Table 2: Ablation study of the metamorphic relations.

MR1 MR1+MR2 MR1 MR1+MR2 MR1 MR1+MR2 MR1 MR1+MR2

Attention 98.1% (935/953) 98.0% (948/967) 97.8% (924/945) 97.7% (937/959) 98.5% (932/946) 98.4% (948/963) 98.2% (936/953) 98.2% (948/965)
OscarB 92.5% (626/677) 91.3% (652/714) 92.5% (604/653) 91.4% (637/697) 92.6% (636/687) 91.2% (667/731) 93.5% (659/705) 92.2% (694/753)
OscarL 93.4% (606/649) 92.3% (624/676) 92.4% (595/644) 91.7% (620/676) 91.8% (592/645) 91.2% (625/685) 92.0% (619/673) 91.6% (647/706)
VinVLB 89.9% (543/604) 88.0% (563/640) 88.9% (526/592) 87.3% (552/632) 90.2% (540/599) 88.4% (571/646) 90.0% (568/631) 88.5% (598/676)
VinVLL 88.1% (518/588) 86.7% (535/617) 87.7% (519/592) 86.0% (535/622) 86.9% (517/595) 84.9% (535/630) 87.2% (540/619) 85.1% (560/658)

Microsoft Azure API 96.7% (844/873) 96.6% (858/888) 96.3% (833/865) 96.1% (852/887) 96.7% (842/871) 96.5% (859/890) 97.4% (839/861) 97.4% (860/883)

MR1 MR1+MR2 MR1 MR1+MR2 MR1 MR1+MR2 MR1 MR1+MR2

Attention 98.10% 98.00% 97.80% 97.70% 98.50% 98.40% 98.20% 98.20%
OscarB 92.50% 91.30% 92.50% 91.40% 92.60% 91.20% 93.50% 92.20%
OscarL 93.40% 92.30% 92.40% 91.70% 91.80% 91.20% 92.00% 91.60%

VinVLB 89.90% 88.00% 88.90% 87.30% 90.20% 88.40% 90.00% 88.50%
VinVLL 88.10% 86.70% 87.70% 86.00% 86.90% 84.90% 87.20% 85.10%

Microsoft Azure API 96.70% 96.60% 96.30% 96.10% 96.70% 96.50% 97.40% 97.40%

IC Systems
Overlapping Ratio

0% 15% 30% 45%

IC Systems
Overlapping Ratio

0% 15% 30% 45%

example, an erroneous caption gives a depiction "bananas"

when there is only one banana in the image.

To provide a glimpse of the diversity of the uncovered errors,

this section highlights examples for all the three kinds of errors

in Fig. 8. The first column corresponds to the classification errors,

e.g., the caption in the first row uses "a couple of zebra" to describe

the image including a sheep and a zebra, and the caption of the

second row incorrectly describes the bird as a person in a garment.

The second column corresponds to the recognition errors, where

the caption of the first row misses the depiction of a dog near two

horses, and the caption of the second row omits the sheep in a

group of zebras. The third column shows the errors of singular-

plural form, where the caption of the first row describes a single

banana as bananas, and the caption of the second row depicts a

single elephant as two elephants.

4.4 Ablation Study
We conduct the ablation study to evaluate the effectiveness of the

two metamorphic relations we propose. From Table 2 we can see

that the precision of𝑀𝑅1 and𝑀𝑅1+𝑀𝑅2 is very close to each other

in most cases. Sometimes, the precision will be slightly decreased

when we use 𝑀𝑅1 + 𝑀𝑅2, while we will report more erroneous

issues. For example, for the 𝑂𝑠𝑐𝑎𝑟𝐵 model with 45% overlapping

ratio, precision is decreased from 93.5% to 92.2%. However, with

𝑀𝑅1 +𝑀𝑅2, we can find 35 more erroneous issues than only using

𝑀𝑅1, which shows that𝑀𝑅2 is useful and necessary.

4.5 Case Study on IC Errors via Visualization
To better understand the reported captioning errors and explore

the potential root causes, in this section, we conduct visualization

experiments. Specifically, we try to answer the question: "why the

IC systems return incorrect captions given the synthesized images?"

We visualize the errors in both CNN-RNN-Based IC systems (via

Automated Testing of Image Captioning Systems ISSTA ’22, July 18–22, 2022, Virtual, South Korea

attention of the generated object words) and VLP IC systems (via

the prediction of faster R-CNN).

4.5.1 CNN-RNN-Based IC. For CNN-RNN-Based IC, we explore

errors in Attention [85] because it achieves high accuracy among

all the CNN-RNN-Based ICs. We visualize the attention mechanism

as it is the most important component of the model. Specifically,

we intend to show how different overlapping ratios would affect

the attention mechanism and the caption.

In Fig. 9, we present the attention mask changes after inserting

an object to the original background image. We could observe

that, at the beginning, the black bear is correctly captioned in

the background image. However, when we insert the horse into

the background image with different overlapping ratios (𝑛 = 4,

𝑟𝑎𝑡𝑖𝑜𝑚𝑎𝑥 = 45%), we find that the captions become incorrect. For

𝑟𝑎𝑡𝑖𝑜0 and 𝑟𝑎𝑡𝑖𝑜1, the black horse is misclassified as a black bear. For

𝑟𝑎𝑡𝑖𝑜2, the black horse and black bear have been both recognized as

black sheep. For 𝑟𝑎𝑡𝑖𝑜3, the black bear is misclassified as black horse.

The second row of Fig. 9 shows the attentionmasks generated by the

model, which serves as an important component in its captioning

process. By observing the attention masks of 𝑟𝑎𝑡𝑖𝑜0 and 𝑟𝑎𝑡𝑖𝑜1, we

can see that the attention masks for the two words of "bear" in

the caption mistakenly highlight the regions of both the horse and

the bear. This indicates that the captioning error is likely to be

caused by model’s attending to incorrect region. Thus, research on

improving the attention mechanism in demand.

4.5.2 Perturbation to VLP IC. MetaIC also reports many erroneous

captions produced by VLP ICs. Specifically, we choose a typical VLP

IC model𝑂𝑠𝑐𝑎𝑟𝐵 and conduct visualization experiment to show the

vulnerabilities of the two components of VLP ICs, including Faster R-

CNN in the first stage and BERT in the second stage. By comparing

Fig. 10 (a) with Fig. 10 (b), we show an example where its erroneous

caption is caused by Faster R-CNN (the first component). We draw

the bounding boxes produced by the Faster R-CNN of 𝑂𝑠𝑐𝑎𝑟𝐵 for

the background and the synthesized image. For clarity, we only

draw the bounding boxes for the object in the image. The caption

produced by𝑂𝑠𝑐𝑎𝑟𝐵 is correct for the background image. However,

for the synthesized image, the caption describes a single giraffe

as "a couple of giraffes", resulting in an error of singular-plural

form. We could observe that the bounding boxes for background

image are of high accuracy. However, the bounding box of the

giraffe in the synthesized image and that of the horses have a big

overlap. The part of the image framed by the bounding box will be

encoded into region-feature, which acts as the major input to the

second component of 𝑂𝑠𝑐𝑎𝑟𝐵 . The second component uses region

features and the corresponding tags (e.g., "giraffe") to generate the

caption. Specifically,𝑂𝑠𝑐𝑎𝑟𝐵 concatenates the tag "giraffe" with the

region-feature for cross-modal representation learning. We think

the erroneous depiction of "a couple of giraffes" could be caused

by the low-quality region-feature of "giraffe" (i.e., the sub-optimal

bounding box). It overlaps a lot with the horses, and thus 𝑂𝑠𝑐𝑎𝑟𝐵
captions one of the horses as a giraffe.

The visualization experiment also shows that the erroneous cap-

tions may be caused by the glitches in the BERT module the second

component of VLP ICs. As shown in Fig. 10 (c), the bounding boxes

of the objects in the image are of high accuracy, while the generated

sentence omits the description of the bowl on the frisbee. The vi-

sualization case study indicates that MetaIC can report captioning

errors cause by both the first component (image) and the second

component (text).

4.6 Finding Labeling Errors in the Training
Corpus

Labeling errors in the training corpus has been a prevalent and se-

vere problem in machine learning and deep learning. Even the most

famous Datasets have errors in their labels, such as ImageNet [43],

CIFAR [42], and MNIST [23]. Several methods [65, 88] have been

proposed to tackle this problem, mainly focusing on noises in the

data. Recently, AI software applications are approaching human-

level performance. For IC task, Hu et al. [37] claims that their model

has achieved a better result than human in terms of CIDEr [77]

score in Nocaps [8] task. Given that these models have been well

trained on the existing corpora, fixing labeling errors in these cor-

pora is a reasonable way to further improve their performance. In

this section, we explore whether it is possible to adapt the high-

level idea of MetaIC detecting labelling errors in a standard dataset

MS COCO Caption [21].

Specifically, denote 𝐺𝑇 (𝑏) as the label caption of image 𝑏 in MS

COCO Caption, we have a tuple (𝐼 (𝑏), 𝐼 (𝑖 ′),𝐺𝑇 (𝑏)). Denote the

common object class set between 𝐼 (𝑏) and 𝐼 (𝑖 ′) as 𝑆𝑒𝑡𝑖𝑛𝑣𝑎𝑟 :

𝑆𝑒𝑡𝑖𝑛𝑣𝑎𝑟 = 𝑆𝑒𝑡 (𝐼 (𝑏)) ∩ 𝑆𝑒𝑡 (𝐼 (𝑖 ′)), (10)

Intuitively, objects classes in both (𝐼 (𝑏) and 𝐼 (𝑖 ′) imply the impor-

tant objects in the image. We denote the object class set of 𝐺𝑇 (𝑏)
as 𝑆𝑒𝑡 (𝐺𝑇 (𝑏)), it should satisfy the relation that:

𝑆𝑒𝑡𝑖𝑛𝑣𝑎𝑟 ⊂ 𝑆𝑒𝑡 (𝐺𝑇 (𝑏)) . (11)

Otherwise, 𝐺𝑇 (𝑏) may depict image 𝑏 improperly since it is likely

to miss important objects in its caption. We map the object class

to their super-category defined in MS COCO Caption and use the

super-category in the aforementioned method.

We choose ten object classes {𝑑𝑜𝑔, 𝑐𝑎𝑡, 𝑠ℎ𝑒𝑒𝑝, 𝑡𝑟𝑢𝑐𝑘, 𝑐𝑜𝑤, 𝑧𝑒𝑏𝑟𝑎,

𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡, ℎ𝑜𝑟𝑠𝑒, 𝑓 𝑟𝑖𝑠𝑏𝑒𝑒, 𝑏𝑖𝑟𝑑}, construct 6,662 tuples of (𝐼 (𝑏), 𝐼 (𝑖 ′),
𝐺𝑇 (𝑏)), and try to find erroneous labels of these classes in MS

COCO Caption. By using this technique adapted from MetaIC, we

have found 151 caption errors, using only a small portion of the

data in MS COCO Caption. We present examples of incorrect label

errors in Fig. 11, including typos, misclassification error, "no-image"

error, etc. For example, caption (a) in the first row mistakenly writes

"at" rather than "cat"; caption (c) mistakenly describe a "frisbee" as

a "pizza"; caption (e) is a complain message rather than a caption;

and caption (d) incorrectly depicts a "dog" as a "man".

Given that the performance of deep learning models mainly de-

pends on the model structure and the parameters learned from the

training dataset, we believe the labeling errors we find with MetaIC

indicate the usefulness and wide applicability in enhancing the

robustness of IC software. Thus, it reflects the practical relevance of

MetaIC. The 151 labeling errors are found from 6,662 captioned im-

ages in the training data. We believe our approach can detect more

errors on a larger input set. Although finding labeling errors is not

the main focus of this paper, we think the experiment demonstrates

the wide-applicability of MetaIC.

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Boxi Yu, Zhiqing Zhong, Xinran Qin, Jiayi Yao, Yuancheng Wang, and Pinjia He

A couple of black horses
grazing in a field.

A black bear and a baby
black bear in a field.

A black bear and a baby
black bear.

Two black sheep grazing
in a field of grass.

bear

bear(1)

bear(2)

bear(1)

bear(2) sheep horses

A black bear standing in
a grassy field.

𝒓𝒂𝒕𝒊𝒐𝟎 𝒓𝒂𝒕𝒊𝒐𝟐𝒓𝒂𝒕𝒊𝒐𝟏bg 𝒓𝒂𝒕𝒊𝒐𝟑

Figure 9: Attention mechanism fails to depict the images.

Synthesized image

(a) a couple of horses standing in the grass in a field. (b) a couple of giraffes and a horse walking in a field.

Background image

(c) a woman standing in
a field with a blue frisbee.

Synthesized image

Figure 10: Errors caused by the first component (a)(b) and the second component (c) in VLP IC.

4.7 Retraining with Erroneous Issues
To explore whether the erroneous issues reported by MetaIC can

be utilized to improve IC systems, we re-label the erroneous issues

following the labeling standard of MS COCO Caption [21], and

fine-tune the 𝑂𝑠𝑐𝑎𝑟𝐵 model. Specifically, we add the re-labeled

synthesized images to MS COCO Caption and perform fine-tuning

for 40K steps. We follow the publicly available splits
3
as in the

original Oscar paper [47] and use our synthesized images as the

augmented data in the training set.

Table 3 presents the results. We can observe that BLEU-4 in-

creases by 1.2%, METEOR increases by 3.7%, CIDEr increases by

2.5%, and SPICE increases by 8.8%. Specifically, the SPICE [9] has

a system-level correlation of 0.88 with human judgements on MS

COCO [51]. According to a survey of IC systems (Table 2 in [69]),

our improvement of the four score are significant. In addition, we

can see that except for BLEU-4, the other scores of 𝑂𝑠𝑐𝑎𝑟𝐵−𝐹𝑖𝑛𝑡𝑢𝑛𝑒
are higher than 𝑂𝑠𝑐𝑎𝑟𝐿 . The fine-tuned model achieves competi-

tive performance with much fewer parameters and less training

3
https://cs.stanford.edu/people/karpathy/deepimagesent/

time. The results indicate that the captioning errors in the synthetic

images can be utilized to further improve the performance of IC

systems, both in efficiency and accuracy, demonstrating its practical

relevance. Note that although improving IC system using test cases

is an interesting and important topic, it is not the focus of this paper.

Thus, we regard it as a promising future direction.

Table 3: Performance of fine-tuned model.

BLEU-4 METEOR CIDEr SPICE
OscarB 40.5 29.7 137.6 22.8
OscarL 41.7 30.6 140.0 24.5

OscarB-Finetune 41.0 30.8 141.1 24.8
 Improvement (%) 1.2 3.7 2.5 8.8

0.012346 0.037037 0.025436 0.087719

Evaluation Metric
Model

Automated Testing of Image Captioning Systems ISSTA ’22, July 18–22, 2022, Virtual, South Korea

(c) A young girl who is
throwing a piece of pizza.

(a) A at licking its lips
in a pantry.

(b) a dig with a red freeze
be walking in some grass.

(d) a man that is sitting
by a window staring out
the window

(e) There is no image here
to provide a caption for.

(f) a camel walking on a
beach towards the water

Figure 11: Labeling errors in MS COCOCaption [21] reported
by MetaIC.

5 RELATEDWORK
5.1 Robust AI Software
In recent years, deep neural networks have achieved great success

in a variety of fields and thus artificial intelligence (AI) software

has been widely used in our daily lives. However, AI software can

generate erroneous outputs that cause severe accidents and even

endanger the users [44, 46, 93]. To explore the vulnerability of AI

software, a line of research has focused on attacking various AI

systems, such as classification systems [28, 52, 91], and automatic

speech recognition systems [14, 62]. These papers fool the AI soft-

ware with imperceptible perturbations. Meanwhile, to enhance

the reliability of AI software, a variety of related topics have been

studied, including testing [25, 26, 33–35, 39], online adversarial

detection [29, 53, 72, 81], and robust training mechanisms for deep

neural networks [40, 50, 54, 61]. Most of these methods are white-

box, largely dependent on the knowledge of the model internals;

while our approach is black-box, which can be easily adapted to

test any IC systems.

5.2 Multimodal Task and Image Captioning
Modality refers to the way in which something happens or being

sensed by human. Accordingly, a multimodal task indicates that

the task involves more than one modality (e.g., image and text for

image captioning). The corresponding AI models need to learn

these multimodal signals collectively, which brings new challenges

as introduced by Baltrušaitis et al. [11]: representation, transla-

tion, alignment, fusion, and co-learning. Typical multimodal tasks

include speech recognition and synthesis [30, 38], cross-modal re-

treival [27, 80], and image captioning [47, 78, 85, 90]. Compared

with single-modal systems (e.g., image classifier or machine trans-

lation), multimodal systems are more difficult to test because we

need to consider the translation from one modality to another and

most of the existing testing techniques for single-modal models

cannot be used here without non-trivial adaptations.

Recent years have witnessed the blossom of IC systems, where

researchers focus on improving the accuracy of IC. For CNN-RNN-

Based IC, researchers designed various CNNs and RNNs to enhance

the intermediate representation [41, 78, 85]. For VLP IC, researchers

proposed multiple pre-trained techniques [37, 47, 90, 92]. Differ-

ent from these papers that make effort to achieve high accuracy,

MetaIC aims to improve the robustness of IC. To this end, sev-

eral papers focus on attacking existing IC models in a white-box

manner [18, 86, 87], which requires the complete knowledge of un-

derlying networks. Differently, MetaIC is black-box, which does not

rely on model internals, such as network structure and parameters.

5.3 Metamorphic Testing
Metamorphic Testing (MT) is a general methodology that applies

a transformation to test input(s) and observes how the program

output turns into a different one as a result [19, 20, 67]. The core

idea of MT is to verify the MRs between the outputs from multiple

runs of the program with different inputs, which is useful when test

oracle is lacking. MT is widely adopted in traditional software, such

as compilers [45, 49], datalog engines [55], and service-oriented

applications [16, 17]. Recently, it has also been used in testing AI

software, such as autonomous cars [73, 89], statistical classifiers [83,

84], object detection [82], and machine translation [33, 34]. In this

paper, we propose MetaIC, a novel, widely-applicable metamorphic

testing approach for image captioning.

6 CONCLUSION
In this paper, we propose the first black-box testing approach,

MetaIC, for validating image captioning systems. The distinct ben-

efits of MetaIC are its simplicity and generality, and thus wide ap-

plicability. MetaIC can effectively disclose many captioning errors.

In our experiments, MetaIC successfully reports 16,825 erroneous

issues in six IC systems with high precision (84.9%-98.4%) revealing

17,380 captioning errors. In addition to the main focus of this paper

(i.e., testing), to further understand the reported errors, we visualize
the attention of objects in CNN-RNN-Based ICs and the predictions

of Faster R-CNN used in VLP ICs, which explores the major root

causes behind. We also show that MetaIC can be adapted to find

errors in the standard dataset of image captioning, indicating its po-

tential in further enhancing the reliability of IC systems. For future

work, we plan to extend MetaIC by considering other kinds of cap-

tion constituents (e.g., verbs). We will also explore automated error

detection for standard datasets, which we regard as an important

future direction.

ACKNOWLEDGMENTS
We thank the anonymous ISSTA reviewers for their valuable feed-

back on the earlier draft of this paper. This paper was supported by

the National Natural Science Foundation of China (No. 62102340).

Part of the experiments were conducted on the high-performance

computing platform, which is managed by the Information Tech-

nology Services Office (ITSO) at the Chinese University of Hong

Kong, Shenzhen.

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Boxi Yu, Zhiqing Zhong, Xinran Qin, Jiayi Yao, Yuancheng Wang, and Pinjia He

REFERENCES
[1] 2018. Image Caption Generator. https://developer.ibm.com/exchanges/models/

all/max-image-caption-generator

[2] 2020. Auto Image Captioning. https://medium.com/ai-techsystems/auto-image-

captioning-8efcfa517402

[3] 2020. Automatic Image Captioning Using Neural Networks. https://evergreen.

team/articles/automatic-image-captioning.html

[4] 2021. Automated Image Captions and Descriptions. https://cloud.google.com/ai-

workshop/experiments/automated-image-captions-and-descriptions

[5] 2021. Azure Cognitive Services. https://azure.microsoft.com/en-us/services/

cognitive-services

[6] 2021. Flickr: Find your inspiration. https://www.flickr.com/

[7] 2022. MetaIC: An Automated Testing Toolkit for Image Captioning. https://github.

com/RobustNLP/TestIC

[8] Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen, Rishabh Jain, Mark John-

son, Dhruv Batra, Devi Parikh, Stefan Lee, and Peter Anderson. 2019. nocaps:

novel object captioning at scale. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (CVPR). 8948–8957.

[9] Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. 2016. Spice:

Semantic propositional image caption evaluation (ECCV). In European conference
on computer vision. Springer, 382–398.

[10] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[11] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. 2018. Multi-

modal machine learning: A survey and taxonomy. IEEE transactions on pattern
analysis and machine intelligence (TPAMI) 41, 2 (2018), 423–443.

[12] D Bolya, C Zhou, F Xiao, and YJ Lee. 2020. YOLACT++: Better Real-time Instance

Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) (2020).

[13] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. 2019. Yolact: Real-time

instance segmentation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (CVPR). 9157–9166.

[14] Nicholas Carlini and David Wagner. 2018. Audio adversarial examples: Targeted

attacks on speech-to-text. In 2018 IEEE Security and Privacy Workshops (SPW).
IEEE, 1–7.

[15] Mariano Ceccato, Massimiliano Di Penta, Paolo Falcarin, Filippo Ricca, Marco

Torchiano, and Paolo Tonella. 2014. A family of experiments to assess the

effectiveness and efficiency of source code obfuscation techniques. Empirical
Software Engineering (ESE) 19, 4 (2014), 1040–1074.

[16] WK Chan, Shing Chi Cheung, and Karl RPH Leung. 2005. Towards a metamor-

phic testing methodology for service-oriented software applications. In Fifth
International Conference on Quality Software (QSIC’05). 470–476.

[17] WingKwongChan, Shing Chi Cheung, and Karl RPHLeung. 2007. Ametamorphic

testing approach for online testing of service-oriented software applications.

International Journal of Web Services Research (IJWSR) 4, 2 (2007), 61–81.
[18] Hongge Chen, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, and Cho-Jui Hsieh. 2018.

Attacking Visual Language Grounding with Adversarial Examples: A Case Study

on Neural Image Captioning. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (ACL) (Volume 1: Long Papers). 2587–
2597.

[19] Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. 2020. Metamorphic testing:

a new approach for generating next test cases. arXiv preprint arXiv:2002.12543
(2020).

[20] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, TH Tse,

and Zhi Quan Zhou. 2018. Metamorphic testing: A review of challenges and

opportunities. ACM Computing Surveys (CSUR) 51, 1 (2018), 1–27.
[21] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Pi-

otr Dollár, and C Lawrence Zitnick. 2015. Microsoft coco captions: Data collection

and evaluation server. arXiv preprint arXiv:1504.00325 (2015).
[22] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase

representations using RNN encoder-decoder for statistical machine translation.

arXiv preprint arXiv:1406.1078 (2014).
[23] Li Deng. 2012. The mnist database of handwritten digit images for machine

learning research [best of the web]. IEEE Signal Processing Magazine (IEEE Signal
Process Mag) 29, 6 (2012), 141–142.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[25] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. Deep-

stellar: Model-based quantitative analysis of stateful deep learning systems. In

Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE).
477–487.

[26] Alessio Gambi, Marc Mueller, and Gordon Fraser. 2019. Automatically testing self-

driving cars with search-based procedural content generation. In Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA). 318–328.
[27] Dehong Gao, Linbo Jin, Ben Chen, Minghui Qiu, Peng Li, Yi Wei, Yi Hu, and Hao

Wang. 2020. Fashionbert: Text and image matching with adaptive loss for cross-

modal retrieval. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR). 2251–2260.

[28] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and

harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).
[29] Shuangchi Gu, Ping Yi, Ting Zhu, Yao Yao, and Wei Wang. 2019. Detecting

adversarial examples in deep neural networks using normalizing filters. UMBC
Student Collection (2019).

[30] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich

Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al.

2014. Deep speech: Scaling up end-to-end speech recognition. arXiv preprint
arXiv:1412.5567 (2014).

[31] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask r-cnn.

In Proceedings of the IEEE international conference on computer vision (CVPR).
2961–2969.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR). 770–778.

[33] Pinjia He, Clara Meister, and Zhendong Su. 2020. Structure-invariant testing for

machine translation. In 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). 961–973.

[34] Pinjia He, Clara Meister, and Zhendong Su. 2021. Testing Machine Translation

via Referential Transparency. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). 410–422.

[35] Jens Henriksson, Christian Berger, Markus Borg, Lars Tornberg, Cristofer En-

glund, Sankar Raman Sathyamoorthy, and Stig Ursing. 2019. Towards structured

evaluation of deep neural network supervisors. In 2019 IEEE International Con-
ference On Artificial Intelligence Testing (AITest). 27–34.

[36] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[37] Xiaowei Hu, Xi Yin, Kevin Lin, Lijuan Wang, Lei Zhang, Jianfeng Gao, and

Zicheng Liu. 2020. Vivo: Surpassing human performance in novel object cap-

tioning with visual vocabulary pre-training. arXiv preprint arXiv:2009.13682
(2020).

[38] Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande,

Edward Lockhart, Florian Stimberg, Aaron Oord, Sander Dieleman, and Koray

Kavukcuoglu. 2018. Efficient neural audio synthesis. In International Conference
on Machine Learning (ICML). 2410–2419.

[39] Sungmin Kang, Robert Feldt, and Shin Yoo. 2020. SINVAD: Search-based Image

Space Navigation for DNN Image Classifier Test Input Generation. In Proceedings
of the International Workshop on Search Based Software Testing (SBST 2020).

[40] Harini Kannan, Alexey Kurakin, and Ian Goodfellow. 2018. Adversarial logit

pairing. arXiv preprint arXiv:1803.06373 (2018).
[41] Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-semantic alignments for

generating image descriptions. In Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR). 3128–3137.

[42] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features

from tiny images. (2009).

[43] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-

cation with deep convolutional neural networks. Advances in neural information
processing systems (NIPS) 25 (2012), 1097–1105.

[44] Fred. Lambert. 2016. Understanding the fatal Tesla accident on Autopilot and the
NHTSA probe. https://electrek.co/2016/07/01/understanding-fatal-tesla-accident-
autopilot-nhtsa-probe/

[45] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equiv-

alence modulo inputs. ACM Sigplan Notices 49, 6 (2014), 216–226.
[46] Sam Levin. 2018. Tesla fatal crash: ’autopilot’ mode sped up car before driver killed,

report finds. https://www.theguardian.com/technology/2018/jun/07/tesla-fatal-

crash-silicon-valley-autopilot-mode-report

[47] Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Li-

juan Wang, Houdong Hu, Li Dong, and Furu Wei. 2020. Oscar: Object-semantics

aligned pre-training for vision-language tasks. In European Conference on Com-
puter Vision (ECCV). Springer, 121–137.

[48] Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen Wei. 2017. Fully con-

volutional instance-aware semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR). 2359–2367.

[49] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F Donaldson.

2015. Many-core compiler fuzzing. ACM SIGPLAN Notices 50, 6 (2015), 65–76.
[50] Ji Lin, Chuang Gan, and Song Han. 2019. Defensive quantization: When efficiency

meets robustness. arXiv preprint arXiv:1904.08444 (2019).
[51] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common

objects in context. In European conference on computer vision (ECCV). Springer,
740–755.

[52] Bo Luo, Yannan Liu, Lingxiao Wei, and Qiang Xu. 2018. Towards imperceptible

and robust adversarial example attacks against neural networks. In Thirty-second

https://developer.ibm.com/exchanges/models/all/max-image-caption-generator
https://developer.ibm.com/exchanges/models/all/max-image-caption-generator
https://medium.com/ai-techsystems/auto-image-captioning-8efcfa517402
https://medium.com/ai-techsystems/auto-image-captioning-8efcfa517402
https://evergreen.team/articles/automatic-image-captioning.html
https://evergreen.team/articles/automatic-image-captioning.html
https://cloud.google.com/ai-workshop/experiments/automated-image-captions-and-descriptions
https://cloud.google.com/ai-workshop/experiments/automated-image-captions-and-descriptions
https://azure.microsoft.com/en-us/services/cognitive-services
https://azure.microsoft.com/en-us/services/cognitive-services
https://www.flickr.com/
https://github.com/RobustNLP/TestIC
https://github.com/RobustNLP/TestIC
https://electrek.co/2016/07/01/understanding-fatal-tesla-accident-autopilot-nhtsa-probe/
https://electrek.co/2016/07/01/understanding-fatal-tesla-accident-autopilot-nhtsa-probe/
https://www.theguardian.com/technology/2018/jun/07/tesla-fatal-crash-silicon-valley-autopilot-mode-report
https://www.theguardian.com/technology/2018/jun/07/tesla-fatal-crash-silicon-valley-autopilot-mode-report

Automated Testing of Image Captioning Systems ISSTA ’22, July 18–22, 2022, Virtual, South Korea

aaai conference on artificial intelligence (AAAI).
[53] Shiqing Ma and Yingqi Liu. 2019. Nic: Detecting adversarial samples with neural

network invariant checking. In Proceedings of the 26th Network and Distributed
System Security Symposium (NDSS 2019).

[54] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. 2017. Towards deep learningmodels resistant to adversarial attacks.

arXiv preprint arXiv:1706.06083 (2017).
[55] Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz. 2021.

Metamorphic testing of Datalog engines. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (FSE/ESEC). 639–650.

[56] Mitchell Marcus, Beatrice Santorini, andMary AnnMarcinkiewicz. 1993. Building

a large annotated corpus of English: The Penn Treebank. (1993).

[57] Mary L McHugh. 2012. Interrater reliability: the kappa statistic. Biochemia
medica 22, 3 (2012), 276–282.

[58] Youssef Mroueh. 2020. Image Captioning as an Assistive Technology. https://

www.ibm.com/blogs/research/2020/07/image-captioning-assistive-technology

[59] CAROL VAN NATTA. 2020. AI Fails at Photo Captions. https://author.

carolvannatta.com/ai-fails-at-photo-captions/

[60] World Health Organization. 2019. World report on vision. (2019). ISBN:

9241516577 Publisher: World Health Organization.

[61] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.

2016. Distillation as a defense to adversarial perturbations against deep neural

networks. In 2016 IEEE symposium on security and privacy (SP). 582–597.
[62] Yao Qin, Nicholas Carlini, Garrison Cottrell, Ian Goodfellow, and Colin Raffel.

2019. Imperceptible, robust, and targeted adversarial examples for automatic

speech recognition. In International conference on machine learning. PMLR, 5231–

5240.

[63] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:

Towards real-time object detection with region proposal networks. Advances in
neural information processing systems (NIPS) 28 (2015), 91–99.

[64] Andrea Romdhana, Mariano Ceccato, Gabriel Claudiu Georgiu, Alessio Merlo,

and Paolo Tonella. 2021. COSMO: Code Coverage Made Easier for Android. In

2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST).
IEEE, 417–423.

[65] Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen

Paritosh, and Lora M Aroyo. 2021. “Everyone wants to do the model work, not

the data work”: Data Cascades in High-Stakes AI. In proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems (CHI). 1–15.

[66] Stan Schroeder. 2016. Microsoft created a bot to auto-caption photos and it’s

going hilariously wrong. https://mashable.com/article/microsoft-captionbot

Section: Life.

[67] Sergio Segura, Gordon Fraser, Ana B Sanchez, and Antonio Ruiz-Cortés. 2016. A

survey on metamorphic testing. IEEE Transactions on software engineering (TSE)
42, 9 (2016), 805–824.

[68] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and

Yann LeCun. 2013. Overfeat: Integrated recognition, localization and detection

using convolutional networks. arXiv preprint arXiv:1312.6229 (2013).
[69] Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi, Silvia Cascianelli, Giuseppe

Fiameni, and Rita Cucchiara. 2021. From show to tell: A survey on image cap-

tioning. arXiv preprint arXiv:2107.06912 (2021).
[70] Zeyu Sun, Jie M Zhang, Mark Harman, Mike Papadakis, and Lu Zhang. 2020.

Automatic testing and improvement of machine translation. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering (ICSE). 974–985.

[71] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning

with neural networks. In Advances in neural information processing systems (NIPS).
3104–3112.

[72] Guanhong Tao, Shiqing Ma, Yingqi Liu, and Xiangyu Zhang. 2018. Attacks meet

interpretability: Attribute-steered detection of adversarial samples. arXiv preprint
arXiv:1810.11580 (2018).

[73] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated

testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th international conference on software engineering (ICSE). 303–314.

[74] Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail Kaiser, and Baishakhi Ray.

2020. Testing DNN image classifiers for confusion & bias errors. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering (ICSE).

1122–1134.

[75] Jonas Uhrig, Eike Rehder, Björn Fröhlich, Uwe Franke, and Thomas Brox. 2018.

Box2pix: Single-shot instance segmentation by assigning pixels to object boxes.

In 2018 IEEE Intelligent Vehicles Symposium (IV). 292–299.
[76] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you

need. In Advances in neural information processing systems (NIPS). 5998–6008.
[77] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. 2015. Cider:

Consensus-based image description evaluation. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition (CVPR). 4566–4575.

[78] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show

and tell: A neural image caption generator. In Proceedings of the IEEE conference
on computer vision and pattern recognition (CVPR). 3156–3164.

[79] Alessio Viticchié, Leonardo Regano, Marco Torchiano, Cataldo Basile, Mariano

Ceccato, Paolo Tonella, and Roberto Tiella. 2016. Assessment of source code

obfuscation techniques. In 2016 IEEE 16th international working conference on
source code analysis and manipulation (SCAM). IEEE, 11–20.

[80] Nam Vo, Lu Jiang, Chen Sun, Kevin Murphy, Li-Jia Li, Li Fei-Fei, and James Hays.

2019. Composing text and image for image retrieval-an empirical odyssey. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 6439–6448.

[81] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. 2019.

Adversarial sample detection for deep neural network through model mutation

testing. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). 1245–1256.

[82] Shuai Wang and Zhendong Su. 2020. Metamorphic object insertion for testing

object detection systems. In 2020 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE). 1053–1065.

[83] Xiaoyuan Xie, Joshua Ho, Christian Murphy, Gail Kaiser, Baowen Xu, and

Tsong Yueh Chen. 2009. Application of metamorphic testing to supervised

classifiers. In 2009 Ninth International Conference on Quality Software (QSIC).
135–144.

[84] Xiaoyuan Xie, Joshua WK Ho, Christian Murphy, Gail Kaiser, Baowen Xu, and

Tsong Yueh Chen. 2011. Testing and validating machine learning classifiers by

metamorphic testing. Journal of Systems and Software (JSS) 84, 4 (2011), 544–558.
[85] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and tell: Neural

image caption generation with visual attention. In International conference on
machine learning (ICML). PMLR, 2048–2057.

[86] Xiaojun Xu, Xinyun Chen, Chang Liu, Anna Rohrbach, Trevor Darrell, and Dawn

Song. 2018. Fooling vision and language models despite localization and attention

mechanism. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 4951–4961.

[87] Yan Xu, Baoyuan Wu, Fumin Shen, Yanbo Fan, Yong Zhang, Heng Tao Shen,

and Wei Liu. 2019. Exact adversarial attack to image captioning via structured

output learning with latent variables. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 4135–4144.

[88] Jing Zhang, Victor S Sheng, Tao Li, and Xindong Wu. 2017. Improving crowd-

sourced label quality using noise correction. IEEE transactions on neural networks
and learning systems (TNNLS) 29, 5 (2017), 1675–1688.

[89] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-

shid. 2018. DeepRoad: GAN-based metamorphic testing and input validation

framework for autonomous driving systems. In 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). 132–142.

[90] Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, LijuanWang,

Yejin Choi, and Jianfeng Gao. 2021. VinVL: Making Visual Representations Matter

in Vision-Language Models. arXiv preprint arXiv:2101.00529 (2021).
[91] Zhengyu Zhao, Zhuoran Liu, and Martha Larson. 2020. Towards large yet im-

perceptible adversarial image perturbations with perceptual color distance. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 1039–1048.

[92] Luowei Zhou, Hamid Palangi, Lei Zhang, Houdong Hu, Jason Corso, and Jianfeng

Gao. 2020. Unified vision-language pre-training for image captioning and vqa.

In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Vol. 34.
13041–13049.

[93] Chris. Ziegler. 2016. AGoogle self-driving car caused a crash for the first time. https:
//www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report

https://www.ibm.com/blogs/research/2020/07/image-captioning-assistive-technology
https://www.ibm.com/blogs/research/2020/07/image-captioning-assistive-technology
https://author.carolvannatta.com/ai-fails-at-photo-captions/
https://author.carolvannatta.com/ai-fails-at-photo-captions/
https://mashable.com/article/microsoft-captionbot
https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report
https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.2 Modern Image Captioning Systems

	3 Approach and Implementation
	3.1 Object Extraction
	3.2 Object Insertion
	3.3 Caption Collection
	3.4 Error Detection

	4 Evaluation
	4.1 Experimental Setup and Dataset
	4.2 Precision
	4.3 Erroneous Captions
	4.4 Ablation Study
	4.5 Case Study on IC Errors via Visualization
	4.6 Finding Labeling Errors in the Training Corpus
	4.7 Retraining with Erroneous Issues

	5 Related Work
	5.1 Robust AI Software
	5.2 Multimodal Task and Image Captioning
	5.3 Metamorphic Testing

	6 Conclusion
	Acknowledgments
	References

