
Experience Report: System Log Analysis for
Anomaly Detection

Shilin He, Jieming Zhu, Pinjia He, and Michael R. Lyu

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong

Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China

{slhe, jmzhu, pjhe, lyu}@cse.cuhk.edu.hk

Abstract—Anomaly detection plays an important role in man-
agement of modern large-scale distributed systems. Logs, which
record system runtime information, are widely used for anomaly
detection. Traditionally, developers (or operators) often inspect
the logs manually with keyword search and rule matching. The
increasing scale and complexity of modern systems, however,
make the volume of logs explode, which renders the infeasibility
of manual inspection. To reduce manual effort, many anomaly
detection methods based on automated log analysis are proposed.
However, developers may still have no idea which anomaly
detection methods they should adopt, because there is a lack
of a review and comparison among these anomaly detection
methods. Moreover, even if developers decide to employ an
anomaly detection method, re-implementation requires a non-
trivial effort. To address these problems, we provide a detailed
review and evaluation of six state-of-the-art log-based anomaly
detection methods, including three supervised methods and three
unsupervised methods, and also release an open-source toolkit
allowing ease of reuse. These methods have been evaluated on
two publicly-available production log datasets, with a total of
15,923,592 log messages and 365,298 anomaly instances. We
believe that our work, with the evaluation results as well as
the corresponding findings, can provide guidelines for adoption
of these methods and provide references for future development.

I. INTRODUCTION

Modern systems are evolving to large scale, either by scaling

out to distributed systems built on thousands of commodity

machines (e.g., Hadoop [1], Spark [2]), or by scaling up to

high performance computing with supercomputers of thou-

sands of processors (e.g., Blue Gene/L [36]). These systems

are emerging as the core part of IT industry, supporting a

wide variety of online services (such as search engines, social

networks, and e-commence) and intelligent applications (such

as weather forecasting, business intelligence, and biomedical

engineering). Because most of these systems are designed to

operate on a 24x7 basis, serving millions of online users

globally, high availability and reliability become a must.

Any incidents of these systems, including service outage and

degradation of quality of service, will break down applications

and lead to significant revenue loss.

Anomaly detection, which aims at uncovering abnormal

system behaviors in a timely manner, plays an important

role in incident management of large-scale systems. Timely

anomaly detection allows system developers (or operators)

to pinpoint issues promptly and resolve them immediately,

thereby reducing system downtime. Systems routinely gen-

erate logs, which record detailed runtime information dur-

ing system operation. Such widely-available logs are used

as a main data source for system anomaly detection. Log-

based anomaly detection (e.g., [27], [38], [47]) has become

a research topic of practical importance both in academia

and in industry. For traditional standalone systems, developers

manually check system logs or write rules to detect anomalies

based on their domain knowledge, with additional use of

keyword search (e.g., “fail”, “exception”) or regular expression

match. However, such anomaly detection that relies heavily on

manual inspection of logs have become inadequate for large-

scale systems, due to the following reasons:

1) The large-scale and parallel nature of modern systems

makes system behaviors too complex to comprehend

by each single developer, who is often responsible

for sub-components only. For example, many open-

source systems (e.g., Hadoop, Spark) are implemented

by hundreds of developers. A developer might have

only incomplete understanding of the overall system

behaviors, thus making it a great challenge to identify

issues from huge logs.

2) Modern systems are generating tons of logs, for exam-

ple, at a rate of about 50 gigabytes (around 120~200

million lines) per hour [32]. The sheer volume of such

logs makes it notoriously difficult, if not infeasible, to

manually discern the key information from the noise

data for anomaly detection, even with the utility such

as search and grep.

3) Large-scale systems are typically built with different

fault tolerant mechanisms employed. Systems some-

times run the same task with redundancy and even proac-

tively kill a speculative task to improve performance.

In such a setting, the traditional method using keyword

search becomes ineffective for extracting suspicious log

messages in these systems, which likely leads to many

false positives that are actually log messages unrelated

to real failures [27]. This will significantly increase the

effort in manual inspection.

As a result, automated log analysis methods for anomaly

detection are highly in demand. Log-based anomaly detection

has been widely studied in last decades. However, we found

that there is a gap between research in academia and practice

in industry. On one hand, developers are, in many cases,

not aware of the state-of-the-art anomaly detection methods,

since there is currently a lack of a comprehensive review

2016 IEEE 27th International Symposium on Software Reliability Engineering

2332-6549/16 $31.00 © 2016 IEEE

DOI 10.1109/ISSRE.2016.21

207

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 01,2021 at 09:17:17 UTC from IEEE Xplore. Restrictions apply.

on this subject. They have to go through a large body of

literature to get a comprehensive view of current anomaly

detection methods. This is a cumbersome task yet does not

guarantee that the most suitable method can be found, because

each research work usually focuses specifically on reporting

a detailed method towards a target system. The difficulty

may be exacerbated if developers have no prior background

knowledge on machine learning that is required to understand

these methods. On the other hand, to our knowledge, no log-

based open-source tools are currently available for anomaly

detection. There is also a lack of comparison among existing

anomaly detection methods. It is hard for developers to know

which is the best method to their practical problem at hand.

To compare all candidate methods, they need to try each one

with their own implementation. Enormous efforts are often

required to reproduce the methods, because no test oracles

exist to guarantee correct implementations of the underlying

machine learning algorithms.

To bridge this gap, in this paper, we provide a detailed

review and evaluation of log-based anomaly detection, as well

as release an open-source toolkit1 for anomaly detection. Our

goal is not to improve any specific method, but to portray an

overall picture of current research on log analysis for anomaly

detection. We believe that our work can benefit researchers

and practitioners in two aspects: The review can help them

grasp a quick understanding of current anomaly detection

methods; while the open-source toolkit allows them to easily

reuse existing methods and make further customization or

improvement. This helps avoid time-consuming yet redundant

efforts for re-implementation.

The process of log analysis for anomaly detection in-

volves four main steps: log collection, log parsing, feature

extraction, and anomaly detection. In our last work [24],

we have presented a review and evaluation of automatic

log parsing methods, where four open-source log parsers

are publicly released. In this work, we will focus primarily

on the aspects of feature extraction and machine learning

models for anomaly detection. According to the type of

data involved and the machine learning techniques employed,

anomaly detection methods can be classified into two broad

categories: supervised anomaly detection and unsupervised

anomaly detection. Supervised methods need labeled training

data with clear specification on normal instances and abnormal

instances. Then classification techniques are utilized to learn

a model to maximize the discrimination between normal and

abnormal instances. Unsupervised methods, however, do not

need labels at all. They work based on the observation that an

abnormal instance usually manifests as an outlier point that is

distant from other instances. As such, unsupervised learning

techniques, such as clustering, can be applied.

More specifically, we have reviewed and implemented six

representative anomaly detection methods reported in recent

literature, including three supervised methods (i.e., Logistic

Regression [12], Decision Tree [15], and SVM [26]) and three

unsupervised methods (i.e., Log Clustering [27], PCA [47],

and Invariant Mining [28]). We further perform a systematic

1Available at https://github.com/cuhk-cse/loglizer

evaluation of these methods on two publicly-available log

datasets, with a total of 15,923,592 log messages and 365,298

anomaly instances. The evaluation results are reported on

precision (in terms of the percentage of how many reported

anomalies are correct), recall (in terms of the percentage of

how many real anomalies are detected), and efficiency (in terms

of the running times over different log sizes). Though the data

are limited, but we believe that these results, as well as the

corresponding findings revealed, can provide guidelines for

adoption of these methods and serve as baselines in future

development.

In summary, this paper makes the following contributions:

• A detailed review of commonly-used anomaly detection

methods based on automated log analysis;

• An open-source toolkit consisting of six representative

anomaly detection methods; and

• A systematic evaluation that benchmarks the effectiveness

and efficiency of current anomaly detection methods.

The remainder of this paper is organized as follows. Section II

describes the overall framework of log-based anomaly detec-

tion. Section III reviews six representative anomaly detection

methods. We report the evaluation results in Section IV, and

make some discussions in Section V. Section VI introduces

the related work and finally Section VII concludes the paper.

II. FRAMEWORK OVERVIEW

Figure 1 illustrates the overall framework for log-based

anomaly detection. The anomaly detection framework mainly

involves four steps: log collection, log parsing, feature extrac-

tion, and anomaly detection.

Log collection: Large-scale systems routinely generate

logs to record system states and runtime information, each

comprising a timestamp and a log message indicating what

has happened. These valuable information could be utilized

for multiple purposes (e.g., anomaly detection), and thereby

logs are collected first for further usage. Fore example, Figure

1 depicts 8 log lines extracted from the HDFS logs on Amazon

EC2 platform [47], while some fields are omitted here for ease

of presentation.

Log parsing: Logs are unstructured, which contain free-

form text. The purpose of log parsing is to extract a group

of event templates, whereby raw logs can be structured. More

specifically, each log message can be parsed into a event tem-

plate (constant part) with some specific parameters (variable

part). As illustrated in Figure 1, the 4th log message (Log 4)

is parsed as “Event 2” with an event template “Received block

* of size * from *”.

Feature extraction: After parsing logs into separate events,

we need to further encode them into numerical feature vectors,

whereby machine learning models can be applied. To do so,

we first slice the raw logs into a set of log sequences by

using different grouping techniques, including fixed windows,

sliding windows, and session windows. Then, for each log

sequence, we generate a feature vector (event count vector),

which represents the occurence number of each event. All

feature vectors together can form a feature matrix, that is,

a event count matrix.

208

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 01,2021 at 09:17:17 UTC from IEEE Xplore. Restrictions apply.

Figure 1: Framework of anomaly detection

Anomaly detection: Finally, the feature matrix can be fed

to machine learning models for training, and thus generate a

model for anomaly detection. The constructed model can be

used to identify whether or not a new incoming log sequence

is an anomaly.

III. METHODOLOGY

In this section, we give a detailed review on methods for

different phases: log parsing, feature extraction and anomaly

detection. For log parsing, we briefly give the basic ideas

and introduce several typical log parsers. Then, three feature

extraction techniques are discussed, which are applied on the

parsed log events to generate feature vectors. After obtaining

the feature vectors, we focus on six representative anomaly

detection approaches, of which three are supervised methods

and the other three are unsupervised.

A. Log Parsing

Logs are plain text that consists of constant parts and

variable parts, which may vary among different occurrences.

For instance, given the logs of “Connection from 10.10.34.12

closed” and “Connection from 10.10.34.13 closed”, the words

“Connection”, “from” and “closed” are considered as con-

stant parts because they always stay the same, while the

remaining parts are called variable parts as they are not fixed.

Constant parts are predefined in source codes by developers,

and variable parts are often generated dynamically (e.g., port

number, IP address) that could not be well utilized in anomaly

detection. The purpose of log parsing is to separate constant

parts from variable parts and form a well-established log event

(i.e., “Connection from * closed” in the example).

There are two types of log parsing methods: clustering-

based (e.g., LKE [20], LogSig [44]) and heuristic-based

(e.g., iPLoM [29], SLCT [45]). In clustering-based log parsers,

distances between logs are calculated first, and clustering tech-

niques are often employed to group logs into different clusters

in the next step. Finally, event template is generated from

each cluster. For heuristic-based approaches, the occurrences

of each word on each log position are counted. Next, frequent

words are selected and composed as the event candidates.

Finally, some candidates are chosen to be the log events. We

implemented and compared four log parsers in our previous

work [24]. Besides, we published an open-source log parsing

toolkit online2, which is employed to parse raw logs into log

events in this paper.

B. Feature Extraction

The main purpose of this step is to extract valuable features

from log events that could be fed into anomaly detection

models. The input of feature extraction is log events generated

in the log parsing step, and the output is an event count matrix.

In order to extract features, we firstly need to separate log

data into various groups, where each group represents a log

sequence. To do so, windowing is applied to divide a log

dataset into finite chunks [5]. As illustrated in Figure 1, we

use three different types of windows: fixed windows, sliding

windows, and session windows.

Fixed window: Both fixed windows and sliding windows

are based on timestamp, which records the occurrence time

of each log. Each fixed window has its size, which means

the time span or time duration. As shown in Figure 1, the

window size is Δt, which is a constant value, such as one

hour or one day. Thus, the number of fixed windows depends

on the predefined window size. Logs that happened in the same

window are regarded as a log sequence.

Sliding window: Different from fixed windows, sliding

windows consist of two attributes: window size and step size,

e.g., hourly windows sliding every five minutes. In general,

step size is smaller than window size, therefore causing the

overlap of different windows. Figure 1 shows that the window

size is ΔT , while the step size is the forwarding distance.

The number of sliding windows, which is often larger than

fixed windows, mainly depends on both window size and

step size. Logs that occurred in the same sliding window are

also grouped as a log sequence, though logs may duplicate in

multiple sliding windows due to the overlap.

Session window: Compared with the above two windowing

types, session windows are based on identifiers instead of the

timestamp. Identifiers are utilized to mark different execution

paths in some log data. For instance, HDFS logs with block_id

record the allocation, writing, replication, deletion of certain

block. Thus, we can group logs according to the identifiers,

where each session window has a unique identifier.

After constructing the log sequences with windowing tech-

niques, an event count matrix X is generated. In each log

sequence, we count the occurence number of each log event

2Log parsers available at: https://github.com/cuhk-cse/logparser

209

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 01,2021 at 09:17:17 UTC from IEEE Xplore. Restrictions apply.

to form the event count vector. For example, if the event count

vector is [0, 0, 2, 3, 0, 1, 0], it means that event 3 occurred twice

and event 4 occurred three times in this log sequence. Finally,

plenty of event count vectors are constructed to be an event

count matrix X , where entry Xi,j records how many times

the event j occurred in the i-th log sequence.

C. Supervised Anomaly Detection

Supervised learning (e.g., decision tree) is defined as a

machine learning task of deriving a model from labeled

training data. Labeled training data, which indicate normal or

anomalous state by labels, are the prerequisite of supervised

anomaly detection. The more labeled the training data, the

more precise the model would be. We will introduce three

representative supervised methods: Logistic regression, Deci-

sion tree, and Support vector machine (SVM) in the following.

1) Logistic Regression

Logistic regression is a statistical model that has been

widely-used for classification. To decide the state of an in-

stance, logistic regression estimates the probability p of all

possible states (normal or anomalous). The probability p is

calculated by a logistic function, which is built on labeled

training data. When a new instance appears, the logistic

function could compute the probability p (0 < p < 1) of

all possible states. After obtaining the probabilities, the states

with the largest probability is the classification output.

To detect anomalies, an event count vector is constructed

from each log sequence, and every event count vector together

with its label are called an instance. Firstly, we use training

instances to establish the logistic regression model, which is

actually a logistic function. After obtaining the model, we feed

an testing instance X into the logistic function to compute its

possibility p of anomaly, the label of X is anomalous when

p ≥ 0.5 and normal otherwise.

2) Decision Tree

Decision Tree is a tree structure diagram that uses branches

to illustrate the predicted state for each instance. The decision

tree is constructed in a top-down manner using training data.

Each tree node is created using the current “best” attribute,

which is selected by attribute’s information gain [23]. For

example, the root node in Figure 2 shows that there are totally

20 instances in our dataset. When splitting the root node, the

occurrence number of Event 2 is treated as the “best” attribute.

Thus, the entire 20 training instances are split into two subsets

according to the value of this attribute, in which one contains

12 instances and the other consists of 8 instances.

Decision Tree was first applied to failure diagnosis for web

request log system in [15]. The event count vectors together

with their labels described in Section III-B are utilized to

build the decision tree. To detect the state of a new instance,

it traverses the decision tree according to the predicates of

each traversed tree node. In the end of traverse, the instance

will arrive one of the leaves, which reflects the state of this

instance.

Event 2 = 5
Samples: 20

Event 3 = 7
Samples: 12

Event 5 = 12
Samples: 8

Event 4 = 2
Samples: 10

Samples: 2 Samples: 3 Samples: 5

Samples: 6 Samples: 4

True False

Anomaly Normal

NormalAnomaly Anomaly

Figure 2: An example of decision tree

3) SVM

Support Vector Machine (SVM) is a supervised learning

method for classification. In SVM, a hyperplane is constructed

to separate various classes of instances in high-dimension

space. Finding the hyperplane is an optimization problem,

which maximizes the distance between the hyperplane and the

nearest data point in different classes.

In [26], Liang et al. employ SVM to detect failures and

compared it with other methods. Similar to Logistic Regres-

sion and Decision Tree, the training instances are event count

vectors together with their labels. In anomaly detection via

SVM, if a new instance is located above the hyperplane, it

would be reported as an anomaly, while marked as normal

otherwise. There are two kinds of SVM, namely linear SVM

and non-linear SVM. In this paper, we only discuss linear

SVM, because linear SVM outperforms non-linear SVM in

most of our experiments.

D. Unsupervised Anomaly Detection

Unlike supervised methods, unsupervised learning is an-

other common machine learning task but its training data

is unlabeled. Unsupervised methods are more applicable in

real-world production environment due to the lack of labels.

Common unsupervised approaches include various clustering

methods, association rule mining, PCA and etc.

1) Log Clustering

In [27], Lin et al. design a clustering-based method called

LogCluster to identify online system problems. LogCluster

requires two training phases, namely knowledge base initial-

ization phase and online learning phase. Thus, the training

instances are divided into two parts for these two phases,

respectively.

Knowledge base initialization phase contains three steps: log

vectorization, log clustering, representative vectors extraction.

Firstly, log sequences are vectorized as event count vectors,

which are further revised by Inverse Document Frequency

(IDF) [41] and normalization. Secondly, LogCluster clusters

normal and abnormal event count vectors separately with

agglomerative hierarchical clustering, which generates two sets

of vector clusters (i.e., normal clusters and abnormal clusters)

as knowledge base. Finally, we select a representative vector

for each cluster by computing its centroid.

210

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 01,2021 at 09:17:17 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Simplified example of anomaly detection with PCA

Online learning phase is used to further adjust the clus-

ters constructed in knowledge base initialization phase. In

online learning phase, event count vectors are added into the

knowledge base one by one. Given an event count vector, the

distances between it and existing representative vectors are

computed. If the smallest distance is less than a threshold,

this event count vector will be added to the nearest cluster

and the representative vector of this cluster will be updated.

Otherwise, LogCluster creates a new cluster using this event

count vector.

After constructing the knowledge base and complete the

online learning process, LogCluster can be employed to detect

anomalies. Specifically, to determine the state of a new log

sequence, we compute its distance to representative vectors

in knowledge base. If the smallest distance is larger than

a threshold, the log sequence is reported as an anomaly.

Otherwise, if the nearest cluster is a normal/an abnormal

cluster, the log sequence is reported as normal/abnormal.

2) PCA

Principal Component Analysis (PCA) is a statistical method

that has been widely used to conduct dimension reduction. The

basic idea behind PCA is to project high-dimension data (e.g.,

high-dimension points) to a new coordinate system composed

of k principal components (i.e., k dimensions), where k is set

to be less than the original dimension. PCA calculates the k

principal components by finding components (i.e., axes) which

catch the most variance among the high-dimension data. Thus,

the PCA-transformed low-dimension data can preserve the

major characteristics (e.g., the similarity between two points)

of the original high-dimension data. For example, in Figure

3, PCA attempts to transform two-dimension points to one-

dimension points. Sn is selected as the principal component

because the distance between points can be best described by

mapping them to Sn.

PCA was first applied in log-based anomaly detection by

Xu et al. [47]. In their anomaly detection method, each log

sequence is vectorized as an event count vector. After that,

PCA is employed to find patterns between the dimensions

of event count vectors. Employing PCA, two subspace are

generated, namely normal space Sn and anomaly space Sa.

Sn is constructed by the first k principal components and Sn

is constructed by the remaining (n−k), where n is the original

dimension. Then, the projection ya = (1−PPT)y of an event

count vector y to Sa is calculated, where P = [v1,v2, . . . , vk,]
is the first k principal components. If the length of ya is larger

Cond.BA

C

E

F

D

G

X 0

X == 0

X 0

Figure 4: An example of execution flow

than a threshold, the corresponding event count vector will be

reported as an anomaly. For example, the selected point in

Figure 3 is an anomaly because the length of its projection on

Sa is too large. Specifically, an event count vector is regarded

as anomaly if

SPE ≡ ‖ya‖
2 > Qα

where squared prediction error (i.e., SPE) represents the

“length”, and Qα is the threshold providing (1− α) confi-

dence level. We set Q = 0.001 as in the original paper. For k,

we calculate it automatically by adjusting the PCA to capture

95% variance of the data, also same as the original paper.

3) Invariants Mining

Program Invariants are the linear relationships that always

hold during system running even with various inputs and under

different workloads. Invariants mining was first applied to log-

based anomaly detection in [28]. Logs that have the same

session id (e.g., block id in HDFS) often represent the program

execution flow of that session. A simplified program execution

flow is illustrated in Figure 4.

In this execution flow, the system generates a log message

at each stage from A to G. Assuming that there are plenty of

instances running in the system and they follow the program

execution flow in Figure 4, the following equations would be

valid:

n (A) = n (B)
n (B) = n (C) + n (E) + n (F)
n (C) = n (D)
n (G) = n (D) + n (E) + n (F)
where n (∗) represents the number of logs which belong to

corresponding event type ∗.
Intuitively, Invariants mining could uncover the linear rela-

tionships (e.g., n (A) = n (B)) between multiple log events

that represent system normal execution behaviors. Linear

relationships prevail in real-world system events. For example,

normally, a file must be closed after it was opened. Thus, log

with phrase “open file” and log with phrase “close file” would

appear in pair. If the number of log events “open file” and that

of “close file” in an instance are not equal, it will be marked

abnormal because it violates the linear relationship.

Invariants mining, which aims at finding invariants (i.e., lin-

ear relationships), contains three steps. The input of invariants

mining is an event count matrix generated from log sequences,

where each row is an event count vector. Firstly, the invariant

space is estimated using singular value decomposition, which

determines the amount r of invariants that need to be mined in

211

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 01,2021 at 09:17:17 UTC from IEEE Xplore. Restrictions apply.

the next step. Secondly, this method finds out the invariants by

a brute force search algorithm. Finally, each mined invariant

candidate is validated by comparing its support with a thresh-

old (e.g., supported by 98% of the event count vectors). This

step will continue until r independent invariants are obtained.

In anomaly detection based on invariants, when a new log

sequence arrives, we check whether it obey the invariants. The

log sequence will be reported as an anomaly if at least one

invariant is broken.

E. Methods Comparison

To reinforce the understanding of the above six anomaly de-

tection approaches, and help developers better choose anomaly

detection methods to use, we discuss the advantages and

disadvantages of different methods in this part.

For supervised methods, labels are required for anomaly de-

tection. Decision tree is more interpretable than the other two

methods, as developers can detect anomalies with meaningful

explanations (i.e., predicates in tree nodes). Logistic regression

cannot solve linearly non-separable problems, which can be

solved by SVM using kernels. However, parameters of SVM

are hard to tune (e.g., penalty parameter), so it often requires

much manual effort to establish a model.

Unsupervised methods are more practical and meaningful

due to the lack of labels. Log clustering uses the idea of online

learning. Therefore, it is suitable for processing large volume

of log data. Invariants mining not only can detect anomalies

with a high accuracy, but also can provide meaningful and

intuitive interpretation for each detected anomaly. However,

the invariants mining process is time consuming. PCA is not

easy to understand and is sensitive to the data. Thus, its

anomaly detection accuracy varies over different datasets.

F. Tool implementation

We implemented six anomaly detection methods in Python

with over 4,000 lines of code and packaged them as a toolkit.

For supervised methods, we utilize a widely-used machine

learning package, scikit-learn [39], to implement the learning

models of Logistic Regression, Decision Tree, and SVM.

There are plenty of parameters in SVM and logistic regression,

and we manually tune these parameters to achieve the best

results during training. For SVM, we tried different kernels and

related parameters one by one, and we found that SVM with

linear kernel obtains the bette r anomaly detection accuracy

than other kernels. For logistic regression, different parameters

are also explored, and they are carefully tuned to achieve the

best performance.

Implementing unsupervised methods, however, is not

straightforward. For log clustering, we were not able to

directly use the clustering AP I from scikit-learn, because it

is not designed for large-scale datasets, where our data cannot

fit to the memory. We implemented the clustering algorithm

into an online version, whereb y each data instance is grouped

into a cluster one by one. There are multiple thresholds

to be tuned. We also paid great efforts to implement the

invariants mining method, because we built a search space

for possible invariants and proposed multiple ways to prune

Table I: Summary of datasets

System #Time span #Data size #Log messages #Anomalies

BGL 7 months 708 M 4,747,963 348,460

HDFS 38.7 hours 1.55 G 11,175,629 16,838

all unnecessary invariants. It is very time-consuming to test

different combination of thresholds. We finally implemented

PCA method according to the original reference based on the

use of an API from scikit-learn. PCA has only two parameters

and it is easy to tune.

IV. EVALUATION STUDY

In this section, we will first introduce the datasets we em-

ployed and the experiment setup for our evaluation. Then, we

provide the evaluation results of supervised and unsupervised

anomaly detection methods separately, since these two types of

methods are generally applicable in different settings. Finally,

the efficiency of all these methods is evaluated.

A. Experiments Design

Log Datasets: Publicly available production logs are scarce

data because companies rarely publish them due to confidential

issues. Fortunately, by exploring an abundance of literature and

intensively contacting the corresponding authors, we have suc-

cessfully obtained two log datasets, HDFS data [47] and BGL

data [36], which are suitable for evaluating existing anomaly

detection methods. Both datasets are collected from production

systems, with a total of 15,923,592 log messages and 365,298

anomaly samples, that are manually labeled by the original

domain experts. Thus we take these labels (anomaly or not)

as the ground truth for accuracy evaluation purposes. More

statistical information of the datasets is provided in Table I.

HDFS data contain 11,175,629 log messages, which were

collected from Amazon EC2 platform [47]. HDFS logs record

a unique block ID for each block operation such as allocation,

writing, replication, deletion. Thus, the operations in logs can

be more naturally captured by session windows, as introduced

in III-B, because each unique block ID can be utilized to slice

the logs into a set of log sequences. Then we extract feature

vectors from these log sequences and generate 575,061 event

count vectors. Among them, 16,838 samples are marked as

anomalies.

BGL data contain 4,747,963 log messages, which were

recorded by the BlueGene/L supercomputer system at

Lawrence Livermore National Labs (LLNL) [36]. Unlike

HDFS data, BGL logs have no identifier recorded for each

job execution. Thus, we have to use fixed windows or sliding

windows to slice logs as log sequences, and then extract the

corresponding event count vectors. But the number of windows

depends on the chosen window size (and step size). In BGL

data, 348,460 log messages are labeled as failures, and a log

sequence is marked as an anomaly if any failure logs exist in

that sequence.

Experimental setup: We ran all our experiments on a

Linux server with Intel Xeon E5-2670v2 CPU and 128GB

DDR3 1600 RAM, on which 64-bit Ubuntu 14.04.2 with

212

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 01,2021 at 09:17:17 UTC from IEEE Xplore. Restrictions apply.

Precision Recall F-measure
0.0

0.2

0.4

0.6

0.8

1.0

T
ra

in
in

g
A

cc
u
ra

cy

0.96
1.00 0.981.00 1.00 1.00

0.96
1.00 0.98

Logistic Decision Tree SVM

(a) Training Accuracy

Precision Recall F-measure
0.0

0.2

0.4

0.6

0.8

1.0

T
es

ti
n
g

A
cc

u
ra

cy

0.95
1.00 0.981.00 0.99 1.00

0.95
1.00 0.98

Logistic Decision Tree SVM

(b) Testing Accuracy

Figure 5: Accuracy of supervised methods on HDFS data with

session windows

Linux kernel 3.16.0 was running. Unless otherwise stated,

each experiment was run for five times and the average

result is reported. We use precision, recall and F-measure,

which are the most commonly used metrics, to evaluate the

accuracy of anomaly detection methods as we already have

the ground truth (anomaly or not) for both of the datasets. As

shown below, precision measures the percentage of how many

reported anomalies are correct, recall measures the percentage

of how many real anomalies are detected, and F-measure

indicates the harmonic mean of precision and recall.

Precision =
#Anomalies detected

#Anomalies reported

Recall =
#Anomalies detected

#All anomalies

F −measure =
2× Precision×Recall

Precision+Recall

For all three supervised methods, we choose the first 80%
data as the training data, and the remaining 20% as the testing

data because only previously happening events could lead to

a succeeding anomaly. By default, we set the window size

of fixed windows to one hour, and set the window size and

step size of sliding windows to be six hours and one hour,

respectively.

B. Accuracy of Supervised Methods

To explore the accuracy of supervised methods, we use them

to detect anomalies on HDFS data and BGL data. We use

session windows to slice HDFS data and then generate the

event count matrix, while fixed windows and sliding windows

are applied to BGL data separately. In order to check the valid-

ity of three supervised methods (namely Logistic Regression,

Decision Tree, SVM), we first train the models on training

data, and then apply them to testing data. We report both

training accuracy and testing accuracy in different settings, as

illustrated in Figure 7~9. We can observe that all supervised

methods achieve high training accuracy (over 0.95), which

implies that normal instances and abnormal instances are well

separated by using our feature representation. However, their

accuracy on testing data varies with different methods and

datasets. The overall accuracy on HDFS data is higher than

the accuracy on BGL data with both fixed windows and

sliding windows. This is mainly because HDFS system records

relative simple operations with only 29 event types, which is

much less than that in BGL data, which is 385. Besides, HDFS

Precision Recall F-measure
0.0

0.2

0.4

0.6

0.8

1.0

T
ra

in
in

g
A

cc
u
ra

cy

0.99 1.00 1.001.00 1.00 1.001.00 1.00 1.00

Logistic Decision Tree SVM

(a) Training Accuracy

Precision Recall F-measure
0.0

0.2

0.4

0.6

0.8

1.0

T
es

ti
n
g

A
cc

u
ra

cy

0.95

0.57

0.71

0.95

0.57

0.72

0.95

0.57

0.71

Logistic Decision Tree SVM

(b) Testing Accuracy

Figure 6: Accuracy of supervised methods on BGL data with

fixed windows

data are grouped by session windows, thereby causing a higher

correlation between events in each log sequence. Therefore,

anomaly detection methods on HDFS perform better than on

BGL.

In particular, Figure 5 shows the accuracy of anomaly

detection on HDFS data, and all three approaches have ex-

cellent performance on testing data with the F-measure close

to 1. When applying supervised approaches on testing data of

BGL with fixed windows, they do not achieve high accuracy,

although they perform well on training data. As Figure 6

illustrates, all three methods on BGL with fixed windows

have the recall of only 0.57, while they obtain high detection

precision of 0.95. We found that as the fixed window size

is only one hour, thus, it may cause the uneven distribution

of anomalies. For example, some anomalies that happened

in current window may actually be related to events in the

former time window and they are incorrectly divided. As a

consequence, anomaly detection methods with one-hour fixed

window do not perform well on BGL data.

Finding 1: Supervised anomaly detection methods achieve

high precision, while the recall varies over different

datasets and window settings.

To address the problem of poor performance with fixed

windows, we employed the sliding windows to slice BGL

data with window size = 6h and step size = 1h. The results

are given in Figure 7. Comparing with the fixed windows,

anomaly detection based on sliding windows achieve much

higher accuracy on testing data. The reasons are that by using

sliding windows, we not only can obtain as many windows

(event count vectors) as fixed windows, but also can avoid

the problem of uneven distribution because the window size

is much larger. Among supervised methods, we observe that

SVM achieves the best overall accuracy with F-measure of

Precision Recall F-measure
0.0

0.2

0.4

0.6

0.8

1.0

T
ra

in
in

g
A

cc
u
ra

cy

0.99

0.81

0.89

1.00 1.00 1.001.00 1.00 1.00

Logistic Decision Tree SVM

(a) Training Accuracy

Precision Recall F-measure
0.0

0.2

0.4

0.6

0.8

1.0

T
es

ti
n
g

A
cc

u
ra

cy

1.00

0.70

0.82

0.92

0.63

0.74

0.99

0.75

0.85

Logistic Decision Tree SVM

(b) Testing Accuracy

Figure 7: Accuracy of supervised methods on BGL data with

sliding windows

213

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 01,2021 at 09:17:17 UTC from IEEE Xplore. Restrictions apply.

Table II: Sliding windows number for different window size

and step size

Window Size 1 h 3 h 6 h 9 h 12 h
#Sliding windows 5153 5151 5150 5145 5145

Step Size 5 min 30 min 1 h 3 h 6 h
#Sliding windows 61786 10299 5150 1718 860

0.85. Moreover, decision tree and logistic regression that

are based on sliding windows achieve 10.5% and 31.6%
improvements in recall compared to the results on the fixed

windows.

To further study the influences of different window sizes

and various step sizes on anomaly detection accuracy, we

conduct experiments by changing one parameter while keeping

the other parameter constant. According to the diagram a) of

Figure 8, We hold the step size at one hour while changing

the window size as shown in Table II. Window sizes larger

than 12 hours are not considered as they are not practical in

real-world applications. We can observe that the F-measure

of SVM slightly decreases when the window size increases,

while the accuracy of logistic regression increases slowly first

but falls sharply when window sizes increase to nine hours,

and then it keeps steady. It is clear that logistic regression

achieves the highest accuracy when window size is 6 hours.

The variation trend of decision tree accuracy is opposite to the

logistic regression, and it reaches the highest accuracy at 12

hours. Therefore, logistic regression is sensitive to the window

size while decision tree and SVM remain stable.

Finding 2: Anomaly detection with sliding windows can

achieve higher accuracy than that of fixed windows.

Compared with window size, step size likely has a large

effect on anomaly detection accuracy. Table II illustrates that

if we reduce the step size while keeping the window size

at six hours, the number of sliding windows (data instances)

increases dramatically. All three methods show the same trend

that the accuracy first increases slightly, then have a drop at

around 3 hours. This may be caused by the reason that the

number of data instances dramatically decreases when using

a large step size, for example, at 3 hours. One exception

happened at the step size of six hours: The window size equals

to the step size, thus sliding window is the same as fixed

window. In this situation, some noise caused by overlapping

are removed, which leads to a small increase of detection

accuracy.

1h 3h 6h 9h 12h

Window Size

0.4

0.5

0.6

0.7

0.8

0.9

F
-m

ea
su

re

Logistic
Decision Tree
SVM

(a) Different window sizes

5min 0.5h 1h 3h 6h

Step Size

0.4

0.5

0.6

0.7

0.8

0.9

F
-m

ea
su

re

Logistic
Decision Tree
SVM

(b) Different step sizes

Figure 8: Accuracy of supervised methods on BGL data with

different window sizes and step sizes

Precision Recall F-measure
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0.87

0.74
0.80

0.88
0.95

0.91
0.98

0.67

0.79

Log Clustering
Invariant Mining

PCA

(a) Accuracy on HDFS data

Precision Recall F-measure
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0.42

0.87

0.57

0.83

0.99

0.91

0.50

0.61
0.55

Log Clustering
Invariant Mining

PCA

(b) Accuracy on BGL data

Figure 9: Accuracy of unsupervised methods on HDFS data

and BGL data

C. Accuracy of Unsupervised Methods

Although supervised methods achieve high accuracy, espe-

cially on the HDFS data, these methods are not necessarily

applicable in a practical setting, where data labels are often

not available. Unsupervised anomaly detection methods are

proposed to address this problem. To explore the anomaly

detection accuracy of unsupervised methods, we evaluate them

on the HDFS data and BGL data. As indicated in the last

section, sliding window can lead to more accurate anomaly

detection. We therefore only report the results of sliding

windows on BGL data.

As log clustering is extremely time-consuming on HDFS

data with half-a-million instances, tuning parameters become

impractical, we then choose the largest log size that we can

handle in a reasonable time to represent our HDFS data.

In Figure 9, we can observe that all unsupervised methods

show good accuracy on HDFS data, but they obtain relatively

low accuracy on BGL data. Among three methods, invariants

mining achieves superior performance (with F-measure of

0.91) against other unsupervised anomaly detection methods

on both data. Invariants mining automatically constructs linear

correlation patterns to detection anomalies, which fit well with

the nature BGL data, where failures are marked through some

critical events. Log clustering and PCA do not obtain good

detection accuracy on BGL data. The poor performance of

log clustering is caused by the high-dimensional and sparse

characteristics of event count matrix. As such, it is difficult

for log clustering to separate anomalies and normal instances,

which often leads to a lot of false positives.

We study in depth to further understand why the PCA does

not achieve high accuracy on BGL data. The criterion for PCA

to detect anomalies is the distance to normal space (squared

prediction error). As Figure 10 illustrates, when the distance

is larger than a specific threshold (the red dash line represents

our current threshold), an instance is identified as an anomaly.

However, by using the ground truth labels to plot the distance

distribution as shown in Figure 10, we found that both classes

(normal and abnormal) cannot be naturally separated by any

single threshold. Therefore, PCA does not perform well on the

BGL data.

Finding 3: Unsupervised methods generally achieve

inferior performance against supervised methods. But

invariants mining manifests as a promising method with

stable, high performance.

214

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 01,2021 at 09:17:17 UTC from IEEE Xplore. Restrictions apply.

������� ������� ������� �������

�	
��

�

��
��

��
��

��
��

��

��
����

�
���� ������
��

Figure 10: Distance distribution in anomaly space of PCA

Like supervised methods, we also conduct experiments on

different settings of window size and step size to explore

their effects on accuracy. As shown in Figure 11, we have an

interesting observation that the accuracy steadily rises when

the window size increases, while the change of step size

has little influence on accuracy. This observation is contrary

to what we found for supervised methods. As illustrated in

Table II, the window number largely decreases when the

window size increases. Given a larger window size, more

information is covered while more noise can be added as

well, but unsupervised methods could discover more accurate

patterns for anomaly detection.

Findings 4: The settings of window size and step size

have different effects on supervised methods and

unsupervised methods.

D. Efficiency of Anomaly Detection Methods

In Figure 12, the efficiency of all these anomaly detection

methods is evaluated on both datasets with varying log sizes.

As shown in the figure, supervised methods can detect anoma-

lies in a short time (less than one minute) while unsupervised

methods are much more time-consuming (except PCA). We

can observe that all anomaly detection methods scale linearly

as the log size increases, except for the log clustering, whose

time complexity is O(n2). Note that both horizontal and ver-

tical axises are not in linear scale. Furthermore, log clustering

cannot handle large-scale datasets in an acceptable time; thus,

running time results of log clustering are not fully plotted. It

is worth noting that the running time of invariants mining is

larger than log clustering on BGL data but not on HDFS data,

because there are more event types in BGL data than HDFS

data, which increases the time for invariants mining. Besides, it

should also be noted that the running time of invariants mining

1h 3h 6h 9h 12h

Window Size

0.2

0.4

0.6

0.8

1.0

F
-m

ea
su

re

Log Clustering
Invariant Mining

PCA

(a) Different window sizes

5min 0.5h 1h 3h 6h

Step Size

0.2

0.4

0.6

0.8

1.0

F
-m

ea
su

re

Log Clustering
Invariant Mining

PCA

(b) Different step sizes

Figure 11: Accuracy of unsupervised methods with different

window sizes and step sizes on BGL data

2.4 12 60 300 1500

Log Size (M)
(a) HDFS

10-3
10-2
10-1
100
101
102
103
104

R
u
n
n
in
g
T
im

e
(s
ec
)

Logistic
Log Clustering

Decision Tree
Invarants Mining

SVM
PCA

1 5 25 125 625

Log Size (M)
(b) BGL

10-4
10-3
10-2
10-1
100
101
102
103

Figure 12: Running time with increasing log size

slightly decreases at the log size of 125 megabytes on BGL

data. This is because we set the stopping criteria to control its

brute force searching process on large datasets, which could

avoid unnecessary search for high-dimensional correlations.

Finding 5: Most anomaly detection methods scale linearly

with log size, but the methods of Log Clustering and

Invariants Mining need further optimizations for speedup.

V. DISCUSSION

In this section, we discuss some limitations of our work,

and further provide some potential directions for future study.

Diversity of datasets. Logs recorded from production sys-

tems are invaluable to evaluate anomaly detection methods.

However, there publicly-available log dataset are scarce re-

sources, because companies are often unwilling to open their

log data due to confidential issues. This is where evaluation

becomes difficult. Thanks to the support from the authors

in [36], [47], we obtained two production log datasets that

have enabled our work. The datasets represent logs from two

different types of systems, but the evaluation results and the

findings may be still limited by the diversity of the datasets.

Clearly, the availability of more log datasets would allow us to

generalize our findings and drastically support related research.

It is our future plan to collect more log datasets from open

platforms.

Feature representation. Typically, different systems usu-

ally have quite different logs, as illustrate in HDFS and

BGL datasets. To generalize our implementations of different

anomaly detection methods, we focus mainly on a feature

space denoted by event count matrix, which has been em-

ployed in most of existing work (e.g., [28], [47]). There are

still some other features that need for further exploration, such

as the timestamp of a log message, whereby the temporal

duration of two consecutive events and the order information

of a log sequence can be extracted. However, as reported in

[28], logs generated by modern distributed systems are usually

interleaved by different processes. Thus, it becomes a great

challenge to extract reliable temporal features from such logs.

Other available methods. We have reviewed and im-

plemented most of the commonly-used, and representative,

log analysis methods for anomaly detection. However, there

are some other methods employing different models, such

as frequent sequence mining [22], finite state machine [20],

formal concept analysis [18], and information retrieval [30].

215

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 01,2021 at 09:17:17 UTC from IEEE Xplore. Restrictions apply.

We also believe that more are coming out because of the

practical importance of log analysis. It is our ongoing work to

implement and maintain a more comprehensive set of open-

source tools.

Open-source log analysis tools. There is currently a lack

of publicly-available log analysis tools that could be directly

utilized for anomaly detection. We also note that a set of new

companies (e.g., [3], [4]) are offering log analysis tools as their

products. But they are all working as a black box. This would

lead to increased difficulty in reproducible research and slow

down the overall innovation process. We hope our work makes

the first step towards making source code publicly available,

and we advocate more efforts in this direction.

Potential directions. 1) Interpretability of methods. Most

of current log-based anomaly detection methods are built on

machine learning models (such as PCA). But most of these

models work as a “black box”. That is, they are hard to

interpret to provide intuitive insights, and developers often

cannot figure out what the anomalies are. Methods that could

reflect natures of anomalies are highly desired. 2) Real-time

log analysis. Current systems and platforms often generate

logs in real time and in huge volume. Thus, it becomes a

big challenge to deal with big log data in real time. The

development of log analysis tools on big data platforms and

the functionality of real-time anomaly detection are in demand.

VI. RELATED WORK

Log analysis. Log analysis has been widely employed to

improve the reliability of software systems in many aspects

[35], such as anomaly detection [10], [28], [47], failure di-

agnosis [17], [31], [38], program verification [11], [42], and

performance prediction [16]. Most of these log analysis meth-

ods consist of two steps: log parsing and log mining, which

are broadly studied in recent years. He et al. [24] evaluate

the effectiveness of four offline log parsing methods, SLCT

[45], IPLOM [29], LogSig [44], and LKE [20] , which do not

require system source code. Nagappan et al. [34] propose an

offline log parsing method that enjoys linear running time and

space. Xu et al. [47] design an online log parsing method

based on the system source code. For log mining, Xu et

al. [47] detect anomalies use PCA, whose input is a matrix

generated from logs. Beschastnikh et al. [11] employ system

logs to generate a finite state machine, which describes system

runtime behaviors. Different from these papers that employ

log analysis to solve different problems, we focus on anomaly

detection methods based on log analysis.

Anomaly detection. Anomaly detection aims at finding ab-

normal behaviors, which can be reported to the developers for

manual inspection and debugging. Bovenzi et al. [13] propose

an anomaly detection method at operating system level, which

is effective for mission-critical systems. Venkatakrishnan et

al. [46] detect security anomalies to prevent attacks before

they compromise a system. Different from these methods that

focus on detecting a specific kind of anomalies, this paper

evaluates the effectiveness of anomaly detection methods for

general anomalies in large scale systems. Babenko et al. [9]

design a technique to automatically generate interpretations

using of detected failures from anomalies. Alonso et al. [6]

detect anomalies by employing different classifiers. Farshchi

et al. [19] adopt a regression-based analysis technique to

detect anomalies of cloud application operations. Azevedo

et al. [8] use clustering algorithms to detect anomalies in

satellites. These methods, which utilize performance metrics

data collected by different systems, can complement log-based

anomaly detection methods evaluated in this paper. Log-based

anomaly detection is widely studied [19], [20], [28], [31],

[43], [47]. In this paper, we review and evaluate six anomaly

detection methods employing log analysis [12], [15], [26],

[27], [28], [47] because of their novelty and representativeness.
Empirical study. In recent years, many empirical research

investigation on software reliability emerge, because empirical

study can usually provide useful and practical insights for both

researchers and developers. Yuan et al. [48] study the logging

practice of open-source systems and provide improvement

suggestions for developers. Fu et al. [21], [49] conduct an

empirical study on logging practice in industry. Pecchia et

al. [37] study the logging objectives and issues impacting log

analysis in industrial projects. Amorim et al. [7] evaluate the

effectiveness of using decision tree algorithm to recognize

code smells. Lanzaro et al. [25] analyze how software faults in

library code manifest as interface errors. Saha et al. [40] study

the long lived bugs from five different perspectives. Milenkoski

et al. [33] survey and systematize common practices in the

evaluation of computer intrusion detection systems. Chandola

et al. [14] survey anomaly detection methods that use machine

learning techniques in different categories, but this paper aims

at reviewing and benchmarking the existing work that applies

log analysis techniques to system anomaly detection.

VII. CONCLUSION

Logs are widely utilized to detection anomalies in modern

large-scale distributed systems. However, traditional anomaly

detection that relies heavily on manual log inspection be-

comes impossible due to the sharp increase of log size. To

reduce manual effort, automated log analysis and anomaly

detection methods have been widely studied in recent years.

However, developers are still not aware of the state-of-the-

art anomaly detection methods, and often have to re-design

a new anomaly detection method by themselves, due to the

lack of a comprehensive review and comparison among current

methods. In this paper, we fill this gap by providing a detailed

review and evaluation of six state-of-the-art anomaly detection

methods. We also compare their accuracy and efficiency on

two representative production log datasets. Furthermore, we

release an open-source toolkit of these anomaly detection

methods for easy reuse and further study.

VIII. ACKNOWLEDGMENTS

The work described in this paper was fully supported by the

National Natural Science Foundation of China (Project No.

61332010), the Research Grants Council of the Hong Kong

Special Administrative Region, China (No. CUHK 14205214

of the General Research Fund), and 2015 Microsoft Research

Asia Collaborative Research Program (Project No. FY16-RES-

THEME-005).

216

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 01,2021 at 09:17:17 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Apache hadoop (http://hadoop.apache.org/).
[2] Apache spark (http://spark.apache.org/).
[3] Logentries: Log management & analysis software made easy

(https://www.loggly.com/docs/anomaly-detection).
[4] Loggly: Cloud log management service

(https://www.loggly.com/docs/anomaly-detection).
[5] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. FernÃ¡ndez-

Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and
S. Whittle. The dataflow model: a practical approach to balancing
correctness, latency, and cost in massive-scale, unbounded, out-of-
order data processing. In PVLDB’15: Proc. of the VLDB Endowment,
volume 8, pages 1792–1803. VLDB Endowment, 2015.

[6] J. Alonso, L. Belanche, and Dimiter R. Avresky. Predicting software
anomalies using machine learning techniques. In NCA’11: Proc. of

the 10th IEEE International Symposium on Network Computing and

Applications, pages 163–170. IEEE, 2011.
[7] L. Amorim, E. Costa, N. Antunes, B. Fonseca, and M. Ribeiro.

Experience report: Evaluating the effectiveness of decision trees for
detecting code smells. In ISSRE’15: Proc. of the 26th IEEE International

Symposium on Software Reliability Engineering, pages 261–269. IEEE,
2015.

[8] D. R. Azevedo, A. M. Ambrósio, and M. Vieira. Applying data mining
for detecting anomalies in satellites. In EDCC’12: Proc. of the Ninth

European Dependable Computing Conference, pages 212–217. IEEE,
2012.

[9] A. Babenko, L. Mariani, and F. Pastore. Ava: automated interpretation
of dynamically detected anomalies. In ISSTA’09: Proc. of the eighteenth
international symposium on Software testing and analysis, pages 237–
248. ACM, 2009.

[10] S. Banerjee, H. Srikanth, and B. Cukic. Log-based reliability analysis of
software as a service (saas). In ISSRE’10: Proc. of the 21st International
Symposium on Software Reliability Engineering, 2010.

[11] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M.D. Ernst.
Leveraging existing instrumentation to automatically infer invariant-
constrained models. In ESEC/FSE’11: Proc. of the 19th ACM SIGSOFT

Symposium and the 13th European Conference on Foundations of
Software Engineering, 2011.

[12] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen.
Fingerprinting the datacenter: automated classification of performance
crises. In EuroSys’10: Proc. of the 5th European conference on
Computer systems, pages 111–124. ACM, 2010.

[13] A. Bovenzi, F. Brancati, S. Russo, and A. Bondavalli. An os-level
framework for anomaly detection in complex software systems. IEEE

Transactions on Dependable and Secure Computing, 12(3):366–372,
2015.

[14] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM computing surveys (CSUR), 41(3):15, 2009.

[15] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer. Failure
diagnosis using decision trees. In ICAC’04: Proc. of the 1st International

Conference on Autonomic Computing, pages 36–43. IEEE, 2004.
[16] X. Chen, C. Lu, and K. Pattabiraman. Predicting job completion times

using system logs in supercomputing clusters. In in DSN-W’13: Proc.

of the 43rd Annual IEEE/IFIP Conference on Dependable Systems and

Networks Workshop (DSN-W), pages 1–8. IEEE, 2013.
[17] M. Cinque, D. Cotroneo, R. Della Crte, and A. Pecchia. What

logs should you look at when an application fails? insights from an
industrial case study. In DSN’14: Proc. of the 44th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks, pages
690–695. IEEE, 2014.

[18] R. Ding, Q. Fu, J. Lou, Q. Lin, D. Zhang, J. Shen, and T. Xie.
Healing online service systems via mining historical issue repositories.
In ASE’12: Proc. of the 27th IEEE/ACM International Conference on

Automated Software Engineering, pages 318–321. IEEE, 2012.
[19] M. Farshchi, J. Schneider, I. Weber, and J. Grundy. Experience report:

Anomaly detection of cloud application operations using log and cloud
metric correlation analysis. In ISSRE’15: Proc. of the 26th International

Symposium on Software Reliability Engineering. IEEE, 2015.
[20] Q. Fu, J. Lou, Y. Wang, and J. Li. Execution anomaly detection in

distributed systems through unstructured log analysis. In ICDM’09:

Proc. of International Conference on Data Mining, 2009.
[21] Q. Fu, J. Zhu, W. Hu, J. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie.

Where do developers log? an empirical study on logging practices
in industry. In ICSE’14: Companion Proc. of the 36th International

Conference on Software Engineering, pages 24–33, 2014.

[22] X. Fu, R. Ren, J. Zhan, W. Zhou, Z. Jia, and G. Lu. Logmaster: mining
event correlations in logs of large-scale cluster systems. In SRDS’12:
Proc. of the 31st IEEE Symposium on Reliable Distributed Systems,
pages 71–80. IEEE, 2012.

[23] J. Han, M. Kamber, and J. Pei. Data mining: concepts and techniques.
Elsevier, 2011.

[24] P. He, J. Zhu, S. He, J. Li, and R. Lyu. An evaluation study on
log parsing and its use in log mining. In DSN’16: Proc. of the 46th

Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, 2016.

[25] A. Lanzaro, R. Natella, S. Winter, D. Cotroneo, and N. Suri. An
empirical study of injected versus actual interface errors. In ISSTA’14:

Proc. of the 2014 International Symposium on Software Testing and
Analysis, pages 397–408. ACM, 2014.

[26] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo. Failure prediction in
ibm bluegene/l event logs. In ICDM’07: Proc. of the 7th International

Conference on Data Mining, 2007.
[27] Q. Lin, H. Zhang, J.G. Lou, Y. Zhang, and X. Chen. Log clustering

based problem identification for online service systems. In ICSE’16:

Proc. of the 38th International Conference on Software Engineering,
2016.

[28] J. Lou, Q. Fu, S. Yang, Y Xu, and J. Li. Mining invariants from console
logs for system problem detection. In ATC’10: Proc. of the USENIX

Annual Technical Conference, 2010.
[29] A. Makanju, A. Zincir-Heywood, and E. Milios. Clustering event

logs using iterative partitioning. In KDD’09: Proc. of International

Conference on Knowledge Discovery and Data Mining, 2009.
[30] C. Manning, P. Raghavan, and H. SchÃŒtze. Introduction to Informa-

tion Retrieval. Cambridge University Press, 2008.
[31] L. Mariani and F. Pastore. Automated identification of failure causes

in system logs. In Software Reliability Engineering, 2008. ISSRE 2008.
19th International Symposium on, pages 117–126. IEEE, 2008.

[32] H. Mi, H. Wang, Y. Zhou, R. Lyu, and H. Cai. Toward fine-grained,
unsupervised, scalable performance diagnosis for production cloud com-
puting systems. IEEE Transactions on Parallel and Distributed Systems,
24:1245–1255, 2013.

[33] A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B.D. Payne.
Evaluating computer intrusion detection systems: A survey of common
practices. ACM Computing Surveys (CSUR), 48(1):12, 2015.

[34] M. Nagappan, K. Wu, and M.A. Vouk. Efficiently extracting operational
profiles from execution logs using suffix arrays. In ISSRE’09: Proc. of
the 20th International Symposium on Software Reliability Engineering,
pages 41–50. IEEE, 2009.

[35] A. Oliner, A. Ganapathi, and W. Xu. Advances and challenges in log
analysis. Communications of the ACM, 55(2):55–61, 2012.

[36] A. Oliner and J. Stearley. What supercomputers say: A study of
five system logs. In DSN’07:Proc. of the 37th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks, 2007.
[37] A. Pecchia, M. Cinque, G. Carrozza, and D. Cotroneo. Industry prac-

tices and event logging: assessment of a critical software development
process. In ICSE’15: Proc. of the 37th International Conference on

Software Engineering, pages 169–178, 2015.
[38] A. Pecchia, D. Cotroneo, Z. Kalbarczyk, and R.K. Iyer. Improving

log-based field failure data analysis of multi-node computing systems.
In DSN’11: Proc. of the 41st IEEE/IFIP International Conference on

Dependable Systems and Networks, pages 97–108. IEEE, 2011.
[39] F. Pedregosa, G. Varoquaux, A. Gramfort, et al. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[40] R. K. Saha, S. Khurshid, and D.E. Perry. An empirical study of long
lived bugs. In CSMR-WCRE’14: Proc. of the 2014 Software Evolution

Week-IEEE Conference on Software Maintenance, Reengineering and

Reverse Engineering (CSMR-WCRE),, pages 144–153. IEEE, 2014.
[41] G. Salton and C Buckley. Term weighting approaches in automatic text

retrival. Technical report, Cornell, 1987.
[42] W. Shang, Z. Jiang, H. Hemmati, B. Adams, A.E. Hassan, and P. Martin.

Assisting developers of big data analytics applications when deploying
on hadoop clouds. In ICSE’13: Proc. of the 35th International Confer-

ence on Software Engineering, pages 402–411, 2013.
[43] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P. Narasimhan. Salsa:

Analyzing logs as state machines. WASL, 8:6–6, 2008.
[44] L. Tang, T. Li, and C. Perng. LogSig: generating system events from

raw textual logs. In CIKM’11: Proc. of ACM International Conference

on Information and Knowledge Management, pages 785–794, 2011.
[45] R. Vaarandi. A data clustering algorithm for mining patterns from event

logs. In IPOM’03: Proc. of the 3rd Workshop on IP Operations and

Management, 2003.

217

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 01,2021 at 09:17:17 UTC from IEEE Xplore. Restrictions apply.

[46] R. Venkatakrishnan and M. A. Vouk. Diversity-based detection of
security anomalies. In HotSoS’14: Proc. of the 2014 Symposium and
Bootcamp on the Science of Security, page 29. ACM, 2014.

[47] W. Xu, L. Huang, A. Fox, D. Patterson, and M.I. Jordon. Detecting
large-scale system problems by mining console logs. In SOSP’09: Proc.

of the ACM Symposium on Operating Systems Principles, 2009.
[48] D. Yuan, S. Park, P. Huang, Y. Liu, M. Lee, X. Tang, Y. Zhou, and

S Savage. Be conservative: enhancing failure diagnosis with proactive
logging. In OSDI’12: Proc. of the 10th USENIX Conference on
Operating Systems Design and Implementation, pages 293–306, 2012.

[49] J. Zhu, P. He, Q. Fu, H. Zhang, R. Lyu, and D. Zhang. Learning to
log: Helping developers make informed logging decisions. In ICSE’15:
Proc. of the 37th International Conference on Software Engineering,

2015.

218

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 01,2021 at 09:17:17 UTC from IEEE Xplore. Restrictions apply.

