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ABSTRACT

Machine translation software has become heavily integrated into
our daily lives due to the recent improvement in the performance
of deep neural networks. However, machine translation software
has been shown to regularly return erroneous translations, which
can lead to harmful consequences such as economic loss and politi-
cal conflicts. Additionally, due to the complexity of the underlying
neural models, testing machine translation systems presents new
challenges. To address this problem, we introduce a novel method-
ology called PatInv. The main intuition behind Patlnv is that sen-
tences with different meanings should not have the same transla-
tion. Under this general idea, we provide two realizations of PatInv
that given an arbitrary sentence, generate syntactically similar but
semantically different sentences by: (1) replacing one word in the
sentence using a masked language model or (2) removing one word
or phrase from the sentence based on its constituency structure.
We then test whether the returned translations are the same for
the original and modified sentences. We have applied PatInv to test
Google Translate and Bing Microsoft Translator using 200 English
sentences. Two language settings are considered: English—Hindi
(En-Hi) and English—Chinese (En-Zh). The results show that Pat-
Inv can accurately find 308 erroneous translations in Google Trans-
late and 223 erroneous translations in Bing Microsoft Translator,
most of which cannot be found by the state-of-the-art approaches.

CCS CONCEPTS

- Software and its engineering — Software verification and
validation; - Computing methodologies — Machine transla-
tion.
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1 INTRODUCTION

Due to recent improvements in the quality of translations from ma-
chine translation software, many people have started to rely on the
technology in their daily lives. For example, people often read polit-
ical news or articles from other countries and visit websites with
content in various languages. According to [73], in 2016, Google
Translate [2] had 500 million users and translated more than 100
billion words per day. The improvements that have lead to such
widespread usage of machine translation systems are largely due
to the advent of deep neural network, which are now frequently
the core component of modern machine translation software. Neu-
ral machine translation (NMT) models are becoming as good as
a human translator. Many recent NMT systems are approaching
human-level performance in terms of “quality score” (defined by
Google) [77] and “human parity” (defined by Microsoft) [29].

Despite these recent improvements, NMT systems are not as
reliable as one might expect. Deep neural networks are brittle; of-
ten, when a neural network is evaluated on examples that differ
intrinsically from the examples it was trained to model, it does
not perform well [6]. NMT models are no exceptions; they can
produce erroneous outputs when inputs are adversarially manip-
ulated, such as upper casing some of the letters of the sentence
or injecting grammatical errors (e.g., “I are studying”). However,
it is not vital for the sentence to be syntactically wrong to fool
an NMT model. There are numerous cases found where NMT mod-
els return erroneous translations for syntactically and semantically
correct inputs, e.g., in WeChat, a messenger app with over one bil-
lion monthly active users [88]. When encountered by users, incor-
rect translations can have severe and harmful consequences such
as financial loss, political conflicts, medical misdiagnoses, social is-
sues, or personal safety threats [19, 47, 54, 55]. These side-effects
motivate the need to create systems for ensuring the robustness of
machine translation software.
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Table 1: Examples of the errors detected by PatInv. The first two are from En->Hi and the last two are from En->Zh. The
translation is erroneous for both sentences in the first and the third examples; the translation is erroneous for the source
sentence in the second example; the translation is erroneous for the modified sentence in the fourth example.

Source Sentence Modified Sentence Translation (for both) Translation Meaning
The situation at the southern border, | The situation at the southern border, | a/&IUl SHT WX X, ST Ueh dhe & | The situation at the southern border,
which started as a crisis, is now a which started as a crisis, is now a U & gi 2ﬁ, 34 Ueh Fereadt which started as a crisis, is now a
near system wide meltdown. near system wide development. oIt 81 nearby system.
T had a story to tell and I wanted I had a story to tell and I wanted TR U 9 o [o1T Uah hglHT ot I had a story to tell and I wanted
to finish it, Draper says. to finish it, says. 3R & 58 T e dTear ol to finish it.

The South has emerged as a hub of The South has died as a hub of
new auto manufacturing by foreign
makers thanks to lower manufact-

uring costs and less powerful unions.

makers thanks to lower manufact-

new auto manufacturing by foreign

uring costs and less powerful unions.

A TR DS A TR 5519,
TR 2O SMERIE R T
RTINS,

The South has became a hub of
new auto manufacturing by foreign
makers thanks to lower manufact-
uring costs and less powerful unions.

The threatened tariffs led to the
Union pledging countertariffs.

The threatened tariffs led to the
European Union pledging counter-
tariffs.

The threatened tariffs led to the
European Union pledging counter-
tariffs.

PR S Bk DK

However, it can be very difficult to test NMT models. First, test-
ing deep learning models in general is quite different from testing
traditional software, in which systems’ core concepts or algorithms
manifest in source code. Rather, the output of neural networks de-
pends largely on the millions of parameters it has optimized over
during training, making these models essentially black boxes. Sec-
ond, recent testing approaches for artificial intelligence (AI) soft-
ware, of which machine translation software is a subset, primarily
target models with a small number of potential outputs, such as
classifiers. In contrast, simply enumerating the possible outputs of
most NMT models is an intractable problem [56], making machine
translation systems incredibly difficult to test.

The current standard for automatic evaluation is BLEU [58],
which is calculated by comparing the word sequences’ in the sys-
tem’s output with a set of reference quality translations. One of
BLEU’s major weaknesses is that it does not truly understand the
sentence meanings. Furthermore, it is necessary to provide accu-
rate reference translations to determine such a metric for machine
translation systems, which is prohibitive in many situations where
such resources are limited.

Clearly, there is need for effective automated systems for test-
ing machine translation software. This paper proposes a novel test-
ing methodology, namely PatInv, whose main intuition is that sen-
tences of different meanings should not have the same transla-
tions. We use this intuition to formulate approaches which auto-
matically produce syntactically similar sentences with different
meanings. In particular, PatInv generates sentences of different
meaning through two approaches: 1) replacing one word in a sen-
tence with a non-synonymous word and 2) removing a meaningful
word or phrase from the sentence. The original and the newly gen-
erated sentences are fed to the translation system under test; if the
translations are exactly the same, we report them as a suspicious
issue. Our practical implementation of PatInv uses a masked lan-
guage model based on BERT [20] to perturb words in a sentence
and a constituency parser to identify core words and phrases. The-
saurus [3], WordsAPI [4] and the NLTK library [10] are then used
to filter out synonyms and syntactically incorrect sentences.

! A maximum length of four words is common.
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To evaluate the effectiveness of PatInv, we use it to test Google
Translate and Bing Microsoft Translator on 200 English sentences
from two article categories (politics and business) as input released
by He et al. [30]. Without using the optional filtering step (i.e., fil-
tering by sentence embeddings, Section 3.2.1), PatInv successfully
reports 452 pathological invariants with 56.6% average precision.
When this optional filtering mechanism is employed, PatInv can re-
port 28 pathological invariants with 100% accuracy. Table 1 show
some of the erroneous translations found by PatInv. We find that,
due to its conceptual novelty, Patlnv detects a unique set of er-
rors not found by other approaches. All the reported pathological
invariants and source code have been released [65]. The main con-
tributions of this paper are as follows:

e We introduce a novel, widely applicable black-box method-
ology to validate machine translation software.

e We describe a practical implementation to generate syntacti-
cally similar but semantically different sentences using BERT,
using various filters to avoid generating invalid test cases.

e We evaluate the model on 200 sentences for Google Trans-
late and Bing Microsoft Translator with two translation set-
tings.

e We successfully find 308 erroneous translations in Google
translate and 223 in Bing Microsoft Translator with high ac-
curacy, most of which cannot be found by the state-of-the-
art techniques.

2 A MOTIVATING EXAMPLE

During the 2018 Winter Olympic Games, the Norwegian team’s
cooking facilities intended to order 1500 eggs. The games were held
in South Korea and thus they need to place an order in Korean
in a local grocery. The chefs turned to Google Translate for help
translating their order. To their surprise, a truck load of eggs fell
upon their kitchen: Google Translate mistakenly translated 1500
eggs into 15000 eggs in Korean [5].?

’In theory, this erroneous translation can be detected if PatInv replaces "1500” with
”15000.” At the moment, this error has already been fixed. In practice, it is possible that
BERT does not recommend "15000” as a fill word and thus may not find the translation
error.
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This is real life translation error which caused inconvenience
and could have lead to a huge financial loss. Still, translation er-
rors can have much more serious and harmful consequence [19,
47, 54, 55]. For example, in 2018, due to a machine translation
error, Israel’s prime minister’s compliment to Israel Eurovision
winner Netta went from “you are a real darling” to “you are a
real cow” [66], leading to embarrassment and misunderstanding. In
2017, a Palestinian man was arrested by police after posting “Good
morning” on Facebook in Arabic; the post was wrongly translated
to “attack them” in Hebrew and “hurt them” in English [19]. As
more and more people have started to rely on machine transla-
tion, building robust machine translation software is of significant
importance. To enhance the robustness of machine translation soft-
ware, this paper introduces PatInv, a novel and widely-applicable
methodology for testing machine translation.

3 APPROACH AND IMPLEMENTATION

This section discusses the high-level idea of PatInv and provides
two implementations (PatInv-Replace and PatInv-Remove). Recall
that the main intuition behind PatInv is that sentences with dif-
ferent meanings should not have the same translations. Hence, we
find issues such that both sentences have different meanings but
result in the same translation by the model under test. The input
for PatInv is a list of unlabeled, monolingual sentences, while its
output is a list of suspicious issues. For each input sentence, ei-
ther no issue is detected or a list of suspicious issues is returned.
A suspicious issue consists of 1) the original sentence 2) a gener-
ated (semantically different) sentence and 3) their shared transla-
tion. Three types of translation errors can cause an issue: (1) The
original sentence has an erroneous translation (2) the generated
sentence has an erroneous translation (3) both the sentences have
erroneous translations.

Figure 1 shows the overview of PatInv for both implementa-
tions; we use a source sentence from our dataset as the example
input. In summary, PatInv carries out the following four steps:

(1) Generating syntactically-similar sentences. For each unlabelled

sentence, we generate a list of syntactically similar sentences
by modifying a word or a phrase in the sentence.

(2) Filtering via syntactic and semantic information. We filter out
those test cases in which the newly generated sentence has
the same meaning as the original sentence.

(3) Collecting target sentences. We feed the original and the newly
generated sentences to the machine translation system un-
der test and collect their target sentences (i.e., translations).

(4) Detecting translation errors. Translations of the newly gen-
erated sentences are compared with the translation of the
original sentence. If any translation matches that of the orig-
inal sentence, the pair is reported as a potential issue which
may contain an erroneous translation.

3.1 Step 1: Generating Syntactically-Similar
Sentences

Given a sentence in a source language (i.e. a language we translate

from), we need to generate structurally similar sentences that have

a different meaning as input for PatInv. Specifically, we want to
generate syntactically similar but semantically different sentences.
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Several approaches can be taken to produce a list of variations
from a single sentence. For example, we can randomly interchange
words. However, sentences generated using this method are not
necessarily syntactically similar to the original sentence. We have
found the following two approaches effective for the task:

(1) Replace a word in the original sentence with a word of the
same part-of-speech (e.g., noun or adjective) but different
meanings (PatInv-Replace)

(2) Remove a word or phrase from the original sentence sen-
tence. (PatInv-Remove)

3.1.1 Patinv-Replace. In this approach, we replace a single word
in our original sentence with another word of the same part-of-
speech to generate a new sentence with different meaning. For ex-
ample, in Fig. 1 we replace the word “completely” with the word
“slightly” which leads to a syntactically similar but semantically
different sentence. In practice, we replace a given word with k
new words to generate k new sentences. If there are m words in
a sentence that can be replaced, our method will produce a list of
k - m new sentences. We narrow the scope of words that can be re-
placed to avoid strange linguistic phenomenon, which can lead to
false positives later in the testing process. Specifically, only nouns,
verbs, adverbs, adjectives, and possessive pronouns are taken as
candidates for replacement. Additionally, we elect not to replace
stopwords (commonly used words, e.g., has, were) as we empiri-
cally find that replacing those words often leads to syntactically or
semantically incorrect sentences. In our approach, we use the set
of stopwords provided by NLTK [10]°.

Now we discuss the problem of selecting candidates to replace
a given word in the original sentence. We note that it is impor-
tant to find words which fit well in the context to ensure that
our generated sentence makes sense. This criterion eliminates the
method of choosing words just by high word-embedding [60] vec-
tor similarity, as standard word-embeddings do not have any con-
textual information. For example, “back” and “front” have high
word-embedding vector similarity but if we replace “back” in “Look-
ing back at the experience” with “front” in “Looking front at the
experience,” we end up with a sentence unlikely to occur in the
English language.

A model that is well suited for this task is the Masked Language
Model (MLM) [51], inspired by the Cloze Task [71]. Specifically,
given a string containing a single “masked” word as input, an MLM
predicts what word belongs in the masked position. The MLM re-
turns a set of words as potential replacements. The key benefit of
using an MLM is that it takes into account the context of the sen-
tence when predicting the masked token. If the MLM is good, then
it is highly likely that the predicted words will lead to meaningful
sentences. Note that we also check whether the words predicted
by the MLM belong to NLTK stopwords and likewise elect to not
use these words as candidate replacements.

For MLMs, there are several out-of-box options available, which
are built on top of language representation models such as ELMo
[61], GPT-2 [64], and BERT [20]. While training one’s own MLM
is also possible, it would require huge amounts of data and vast
computational resources to even match the caliber of a system built

3There is no universally-used list of stopwords available
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Similar Sentences

Original Sentence

Generating
syntactically
similar
sentences

They are doing something completely different.

Via Replacing Words:
They are doing something around different.
They are doing something slightly different.
They are doing something together different.

Via Removing Words/Phrases:
They are doing something different.
They are doing something.

Filtering via
syntactic and
semantic

information Filtered Sentences

Via Replacing Words:
1) They are doing something slightly different.
2) They are doing something together different.

Via Removing Words/Phrases:

i) They are doing something completely different.
They are doing something slightly different.

Detecting
translation errors

ii) They are doing something completely different.
They are doing something different.

1) T 3 AT &7 7H & |

2) T UH W g, WO w R E |
3) T T T H IR |
NTFFEFTEE

Original Sentence Translation:
T HE, AT HE & |

3) They are doing something different.
4) They are doing something.

ollecting
target
sentences

Suspicious Pairs

Target Sentences

Figure 1: Overview of PatInv (English—Hindi in Google Translate)

on the aforementioned state-of-the-art models, with no guarantee
of producing something better. Since a good MLM is critical for our
approach, we elect to use the state-of-the-art options. Specifically,
in our implementation, we use BERT, a language representation
model developed by Google Al Interestingly, the masked language
task was one of the two main tasks used to train the base model,
giving us further reason to believe BERT is well-suited for this task.

3.1.2  Patinv-Remove. In this approach, we remove a word or a
phrase in our original sentence to generate new sentences. Our
main goal is to remove something meaningful from a sentence. For
example, Fig. 1 shows the complete removal of a word from the
sentence. However, choosing words or phrases to remove is not
a trivial problem. A naive implementation of this approach may
remove all pairs of consecutive words, then triples of consecutive
words, etc. While this implementation surely will not miss any er-
ror that can be detected with this approach, it also leads to many
false positives.

Identifying meaningful phrases in a sentence can be aided by
using its constituency structure, i.e. the syntactic structure of a
sentence. Constituency structures show how a word or a group of
words form different units in a sentence, such as noun phrases or
verb phrases. This structure can be identified using a constituency
parser, which derives a representative parse tree by splitting a sen-
tence according to a set of phrase structure rules [17] defined by a
context-free grammar. There are several approaches for constituency
parsing; currently, the state-of-the-art model uses shift-reduce pars-
ing [91]. This model parses grammar non-terminals from left to
right in a stack-like manner to produce a complete set of relations.
An implementation of [91], which we use, is available through
Stanford’s CoreNLP library [49].

Once a sentence is parsed, we identify all noun phrases (NP),
verb phrase (VB), prepositional phrase (PP), and adverb phrase
(ADVP) as candidates for removal, which can be done by recur-
sively moving through the constituency parse tree. We then form
a set of new sentences by removing each word/phrase in this set
from the original sentence. Specifically, each removal corresponds
to a new sentence.
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3.2 Step 2: Filtering by Syntactic and Semantic
Information

For our two sentence generation approaches, we apply filters, i.e.
remove some of the generated sentences, to reduce potential false
positives. Here we explain the two sets of filters.

3.2.1 Patinv-Replace. We find that some sentences generated us-
ing the masked language model (MLM) can be too semantically
similar to the original sentence or are syntactically incorrect. To
address this issue, we introduce three filtering mechanisms:

1) Filtering out synonyms. An MLM can predict words that are
synonyms of the original word. As we want to generate sentences
with meanings different from that of the original sentence, hav-
ing a word replaced by its synonym (e.g., “good talk” and “nice
talk”) may lead to false positives. Therefore, we filter out those
cases where the predicted word is a synonym of the original word.
This is done using Thesaurus.com [3] and WordsAPI [4] dictionary.

Specifically, we crawl Thesaurus.com to generate a list of syn-
onyms for each of the predicted words. We likewise used the api
provided by WordsAPI to find synonyms. We note that WordsAPI
also includes hierarchical information, such as knowing that a hatch-
back is a type of car, a finger is a part of a hand, etc. In our imple-
mentation, we check whether the predicted word is a synonym or
type of the original word. We filter out these cases.

Interestingly, there are a few cases where similar words can-
not be detected by either of the services mentioned. For exam-
ple, “confirmed” and “affirmed” can have the same meaning in cer-
tain contexts but neither thesaurus nor WordsAPI tag them as syn-
onyms. Similarly, “say” and “said” are conjugations of the same
verb but are not identified as synonyms. In general, we want to
eliminate cases where the base of the predicted word is a syn-
onym of or equivalent to the base of the original word. As a so-
lution to this problem, we use NLTK’s WordNet Lemmatizer to get
the base form of the verb. WordNet Lemmatizer lemmatizes us-
ing WordNet’s built-in Morphy function. It returns the input word
unchanged if it cannot be found in WordNet. A similar situation
occurs for words with the same stem, i.e. “select” and “selective”;
when both are used as adjectives, replacing one with the other in
a sentence will generally not lead to a different semantic meaning.
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We used NLTK’s snowball stemmer to identify the word stem and
elimante cases where the stem of the predicted and original words
are the same.

2) Filtering by constituency structure. In practice, replacing a word
in a sentence with a word of a different part-of-speech can lead
to semantically or syntactically incorrect sentences. For example,
in figure 1 when “completely” is replaced by “around” we end up
with a grammatically incorrect sentence. Such cases can be avoided
by ensuring the original and generated sentence have the same
constituency structure. For this task, we again use the implemen-
tation of [91] available in NLTK’s CoreNLPParser to generate a
constituency parse. We then calculate the distance between the
constituency parse trees of the original and generated sentence.
We use tree-edit distance as our distance measurement, as imple-
mented in python’s APTED library. Between each original and gen-
erated sentence, we ensure tree edit distance is equal to 1, i.e. only
one leaf node, the replaced word, has changed. Note that a dis-
tance of 1 means the part-of-speech of the replaced word has not
changed since part-of-speech tags correspond to nonterminals in
the tree.

3) Filtering by sentence embeddings.* As an additional precaution
to ensure generated sentences do not have the same meaning as
the original sentence, we ensure the “distance” between sentences
is sufficiently large. To mimic a linguistic notion of distance, we
take the vector distance between the embedding of the original
and generated sentences. There are several out-of-the-box options
available for generating sentence embeddings, such as the Univer-
sal Sentence Encoder [13] and BERT. While training a sentence
encoder would also be possible, we note that these state-of-the-art
models are readily available and have proven to perform well on
the task.

In Patlnv, we used the Universal Sentence Encoder, a model
for encoding sentences into vectors based on encoders parameter-
ized by deep neural networks. The Universal Sentence Encoder is
freely available on TensorFlow Hub. The similarity between two
sentences is then calculated as the cosine similarity of the two
sentence embeddings. We filter out the generated sentences with
similarity (to its original sentence) greater than a given threshold,
which is a tunable parameter.

While there is some redundancy in the above filtering steps, us-
ing all three ensures a minimal number of false positives, which is
critical for reducing manual effort.

3.22  Patinv-Remove. Sentences generated using PatInv-Remove
may face similar problems, i.e. they may be nonsensical or retain
their original meaning. Interestingly, we find that removing small
words in the original sentence often leads to the latter problem.
This is the case even when the word is not explicitly a stopword.
For example, in our experiments, we remove the word “found”
from the sentence, “Whether there is a political gain to be found
in dishonoring a servant” and the translation system returns the
same results. While it can be argued that there is an erroneous
translation here, the sentence after word removal does not have
a clearly different meaning. We empirically find that removing
words of character length only greater than 6 alleviates this issue.

4optional step to increase precision as discussed in section 4

867

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

To find a suitable lower bound, we tune this parameter on the Poli-
tics dataset with En-Hi language setting from “0” to “10” with step
size “1” “6” was found to be the lower bound that led to decent pre-
cision and number of pathological invariants. In our experiments,
we found that this lower bound also led to high-quality results in
other experimental settings.

3.3 Step 3: Collecting Target Sentences

Once modified sentences have been generated, we must then feed
them to the translation system under test and retrieve their trans-
lations. In the case of Google Translate and Bing Microsoft Trans-
lator, which we evaluate PatInv on, we use the Google API and
Bing AP, which return the same results as their respective web in-
terfaces. Specifically, sentences in a source language are fed to the
translation system and their translations, in a chosen target lan-
guage, are returned. We do this for each of our original sentences
and all of the generated sentences.

3.4 Step 4: Detecting Translation Errors

Finally, once all translations are collected, we must search for er-
roneous translations. This component of our methodology is quite
straightforward; as we have generated sentences that differ in mean-
ing from their respective original sentences, if the translations of
the original and generated sentences are the same, we have good
reason to suspect an erroneous translation. This check can be done
via a simple string comparison which checks for equality. Fig. 1
shows an example of such an erroneous translation pair.

4 EVALUATION

In this section, we evaluate PatInv by applying both of its imple-
mentations, PatInv-Replace and PatInv-Remove, to Google Trans-
late and Bing Microsoft Translator with real-world sentences as
input. Our main research questions are:

e RQ1: How effective is PatInv at finding erroneous transla-
tions?
e RQ2: Where do the false positives and false negatives come
from?
e RQ3: Can PatInv find erroneous translations that existing
approaches cannot find?
e RQ4: How efficient is PatInv?
e RQ5: How does one tune the parameters of PatInv in prac-
tice?
In answering these questions, we show that both implementations
are effective in finding erroneous translations and most of the erro-
neous translations found cannot be detected by existing approaches.
Additionally, the approach is efficient and is easy to use in practice.

4.1 Experimental Setup

Environment. All experiments are run on DALCO r226416g Rack-
mount Server with 2x12 Core Intel Xeon E5-2650 v4 2.2GHz Pro-
cessor, 256GB DDR4 2400MHz ECC REG Server Memory and 8x
nVidia RTX 2080TI 11GB GPU Processor.

Dataset. To evaluate the performance of PatInv and align with
the SOTA, we use the dataset released in our previous paper [30].
Specifically, this dataset contains 200 English sentences crawled
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Table 2: Statistics of input sentences for evaluation. Each cor-
pus contains 100 sentences.

Corpus #of words/  Average # of # of words
sentence words/sentence Total Distinct

Politics 4-32 19.2 1,918 933

Business 4-33 19.5 1,949 944

from CNN (Cable News Network).” The dataset consists of articles
from two categories: Politics and Business, where each dataset con-
tains 100 sentences. More statistics of the released dataset is illus-
trated in Table 2.

Labeling. The output of our approach is a list of suspicious is-
sues, each of which consists of a pair of sentences where the first
is the original sentence and the second is our generated one. We
manually label each issue reported by PatInv. Two of the authors
inspect all the results separately and discuss the labels for all the
reported issues until convergence. Specifically, for PatInv-Replace,
we first check whether the generated sentence in the issue con-
tains any syntax or semantic errors. If so, the issue will be labeled
as a false positive (examples are in Table 7). Otherwise, we check
whether the original sentence and generated sentence are seman-
tically different. If not, the issue will be labeled as a false positive
(examples are in Table 6). Otherwise, we label the issue as a true
positive. Then, we decide which sentence(s) in this issue contains
translation error(s). For PatInv-Remove, the labeling process is sim-
ilar to PatInv except that we will not label an issue as false positive
because of syntax/semantic errors in the generated sentence.

Comparison. We compared PatInv with two state-of-the-art
approaches: SIT [30] and TransRepair [69]. Both approaches are
based on the intuition that similar source sentences should have
similar translations. For SIT, we directly used the source code re-
leased by the authors. For TransRepair, the authors did not release
their source code due to industrial confidentiality. Thus, we imple-
ment TransRepair by carefully following the explanations in their
paper and consulting the work’s main author for key implemena-
tion details. We re-tune the parameters for both SIT and TransRe-
pair following the same strategies introduced in the papers. In [69],
0.9 is used as the minimum cosine similarity of word embeddings
to generate word pairs. In our experiment, we lower the threshold
to 0.8 because otherwise, we were unable to reproduce the quan-
tity of pairs reported in the original paper, i.e., using 0.9 as the
threshold yielded two magnitudes fewer word pairs than reported
by TransRepair. The implementation of PatInv, SIT, and TransRe-
pair are all released for reuse [65].

4.2 The Effectiveness of PatInv

Both of our approaches aim to automatically find erroneous trans-
lations in machine translation software using unlabelled sentences.
Thus the effectiveness of both of our approaches will be deter-
mined by (1) How many erroneous translations an approach can
find (2) With what precision an approach can find translation er-
rors. In this section, we show the effectiveness of our model by
testing Google translate and Bing Microsoft Translator for two

Shtps://edition.cnn.com/
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Figure 2: Precision v/s Recall trade-off threshold curve for
En-Hi in Google Translate

translation settings (English—Hindi and English—Chinese). We
calculated our results separately for each domain in the evaluation
dataset.

4.2.1 Effectiveness of Patlnv-Replace. Recall that for PatInv-Replace,
we use the similarity between the sentence embedding vectors given
by the Universal Sentence Encoder to check whether the original
sentence and newly generated have same meaning. For different
thresholds we filter out issues in which the pair of sentences have
similarity less than the chosen threshold; we calculate the follow-
ing metrics for the remaining issues:

e precision: the number of erroneous issues divided by total
number of reported issues.

o recall: the number of erroneous issues with similarity less
than threshold divided by total number of erroneous issues
when there is no threshold.

e F1-score: the harmonic mean of precision and recall.
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Table 3: Precision, recall and F1-score of PatInv-Replace.

Google Translate

Setting Dataset TP FP TN FN Prec. Rec. F1
En-Hi Politics 28 16 0 0 0.64 1.0 0.78
En-Hi Business 50 18 13 6 0.74 0.89 0.81
En-Zh  Politics 92 67 0 0 058 10 0.73
En-Zh Business 90 54 0 0 0.63 1.0 0.77
Bing Microsoft Translator
Setting Dataset TP FP TN FN Prec. Rec. F1
En-Hi Politics 1 0 12 1 1 0.5 0.67
En-Hi Business 1 0 12 0 1 1 1
En-Zh  Politics 92 81 0 0 053 1 0.69
En-Zh Business 91 74 0 0 055 1 0.71

Table 4: The number of remaining sentences after each step.

(a) PatInv-Replace

Step No. Dataset No. of sentences
1 Politics 15675
1 Business 16091
2 Politics 11639
2 Business 12604
(b) PatInv-Remove
Step No. Dataset No. of sentences
1 Politics 2047
1 Business 2091
2 Politics 1619
2 Business 1660

(c) State-of-the-art approaches

Toolname Dataset  No. of sentences
SIT Politics 2,068
SIT Business 1,957
TransRepair  Politics 209
TransRepair Business 196

Results. Table 4 (a) shows the number of total sentences (orig-
inal sentences + newly generated sentences) after step 1 and step
2 of PatInv-Replace. For each translation setting, we count the to-
tal number of issues reported for each dataset. We manually check
and verify each issue, reporting how many of these issues are erro-
neous. Ultimately, we were able to achieve precision comparable
with those of the state-of-the-art methods.

We categorize erroneous issues by which of the two sentences
(original or generated) contain a translation error. We categorize
non-erroneous issues into two categories: (1) Issues in which both
sentences have the same meaning. (2) Issues in which the second
sentence is semantically or syntactically incorrect.

For each dataset (business and politics), we tune PatInv’s avail-
able parameter, i.e., the threshold similarity for sentence embed-
dings, and report the precision, recall and F1-score corresponding
each threshold. For the threshold with the best F1-score, we re-
port True Positives (TP), False Positives (FP), True Negatives (TN),
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Table 5: Result of PatInv-Remove for En-Hi.

Translator Dataset TP FP Precision
Google Politics 3 2 0.60
Google  Business 3 1 0.75

Bing Politics 0 1 0
Bing Business 2 3 0.4

False Negatives (FN). Table 3 shows results for Google Translate
and Bing Microsoft Translator. The results shows that we were
able to achieve high recall with precision comparable to the state-
of-the-art approaches as discussed in section 4.4. We note that re-
ducing the threshold does not necessarily increase the precision as
a lower threshold does not eliminate semantic or syntactic errors;
this was specifically apparent in the En-Zh results for the Bing-
Business dataset, as shown in Table 10. We additionally find that
we can achieve 100% precision given a low enough threshold. We
were able to report 28 erroneous issues in total in this case. The
precision-recall trade-off curve is illustrated in Fig. 2.

4.2.2  Effectiveness of Patlnv-Remove. Evaluation Metric. Like-
wise, the output of this approach consists of a list of issues where
the first sentence is the original sentence and the second sentence
is a generated one. The generated sentence is obtained by remov-
ing something meaningful (a word or a phrase) from the sentence.
As in our first approach, an issue is only reported when both the
original and generated sentences have the same translations. We
note that there are two potential cases for each issue: (1) something
meaningful was removed from the original sentence, in which case
the issue is a true positive (TP) (2) nothing important or meaning-
ful was removed from the sentence, in which case the issue is a
false positive (FP).

Results. Table 4(b) shows the number of total sentences (orig-
inal sentences + generated sentences) after step 1 and step 2 of
PatInv-Remove. For each translation pair, we count the total num-
ber of issues reported for each dataset and manually verified how
many of these issues were erroneous. Table 5 shows results for
Google Translate and Bing Microsoft Translator for English—Hindi.
The results for English—Chinese are shown in Table 10, where
they are compared with state-of-the-art approaches in section 4.4.
The results shows that we were able to achieve precision compa-
rable to state-of-the-art approaches. For each erroneous issue, we
label which sentence among the pair has an erroneous translation.

4.3 False Positives and False Negatives

Despite applying multiple filters, there were still some false posi-
tives in both of our approaches. Specifically, we encountered five
sources of false positives. 1) The generated sentence is syntactically
or semantically incorrect as shown in Table 7. Note that our ap-
proach minimizes these false positives; we have used a masked
language model built on top of BERT, a high-performing language
representation model. Employing this strategy should lead to very
few syntactically or semantically incorrect sentences. 2) The re-
placed word is a synonym of the original word. Despite combining
multiple large online databases to filter out synonyms, such cases
still occurred. The main source of such false positives was when
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Table 6: False Positives for PatInv-Replace due to same
meaning,.

And this would take us closer to our

Source goal of a truly European banking sector.
Newlv G ted And this would allow us closer to our
ewly Lenerate goal of a truly European banking sector.
i ) TR Tg g arecd B RIS &1 oh BHIR
Translation (En—Hi) e F T |

And this would take us closer to our

T lation Meani
ransiation Meaning goal of a truly European banking sector.

Nielsen said the most serious cyber threats

Source are those aimed at the heart of democracy.
Nielsen said the most serious cyber threats

Newly Generated are those posed at the heart of democracy.
Translation (En—Hi) s FEzA clichd=

Nielsen said that the most serious cyber threats

T lation Meani
ransiation Meaning are at the heart of democracy.

Table 7: Syntactically/semantically wrong sentences gener-
ated by PatInv-Replace.

They left out that the pilots were not trained
to handle it.
They leaves out that the pilots were not trained
to handle it.
32 el Ioh UTaetel ol 38 AU & 1]
wiRifera @ fowar e
They said that the pilots were not trained
to handle it.

Source

Newly Generated

Translation (En—Hi)

Translation Meaning

The key to accepting praise at work is to show

Source . . i
you received it and appreciate it.
Newly Generated The key to acce'ptmg praise at w9rk is to take
you received it and appreciate it.
T TR =1 AR e ol g &
Translation (En—Hi) GJTUS%EITW = i =T Fﬁu’éﬁ%l

The key to accepting praise at work is to

Translation Meanin . S
& receive it and appreciate it.

Table 8: False Positives generated by PatInv-Remove.

First, proper training for pilots who are flying
new aircraft is crucially important.
First, proper training for pilots who are flying
new aircraft is crucially .

T, Y faH I8 dTel Urdetel & (olg Irad
TfRraToT AEaqul € |
First, proper training for pilots who are flying
new aircraft is important.

Source

Newly Generated

Translation (En—Hi)

Translation Meaning

Three months later, Holmes was indicted on federal
wire fraud charges and stepped down from Theranos.
Three later, Holmes was indicted on federal wire
fraud charges and stepped down from Theranos.
= AR, BRI AR PR
HEEE T Theranos YEFEHH,

Three months later, Holmes was indicted on federal
wire fraud charges and stepped down from Theranos.

Source

Newly Generated

Translation (En—Zh)

Translation Meaning

our databases did not identify words as synonymous due to differ-
ences in tense or plurality from the relevant word registered in the
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Table 9: False Negatives generated by PatInv.

Source The key to accepting praise at work is to show
you received it and appreciate it.
The key to accepting praise at work is to think
Newly Generated 4 pung p L
you received it and appreciate it.
similarity 0.993
Source Actress Jennifer Lawrence is also expected to
star as Holmes in a movie based on Bad Blood.
Actress Jennifer Lawrence is also expected to
Newly G ted
ewly benetate star as Holmes in a movie titled on Bad Blood.
similarity 0.990

database. While we identified word stems with available tools, we
note that this approach does not always work as expected. For ex-
ample, NLTK’s snowball stemmer returns the stems “univers” for
“universities” and “colleg” for “college,” which then cannot be used
with a synonym database as they are not standalone words. 3) The
replaced word in a sentence does not carry much meaning. We find
that replacing some words does not change the meaning of the sen-
tence because the replaced word was not vital for the meanning of
the sentence. Examples of such cases has been provided in Table 6.
To reduce such cases, we remove generated sentences where sen-
tence embedding similarity is high, implying semantic similarity
between the original and generated sentences. 4) Something mean-
ingful is not removed from the sentence. We find that only remov-
ing words and phrases with length > 6 helps to minimize these
cases. 5) The translation system successfully “predicts” the removed
word/phrase. In particular, it is possible that something meaning-
ful is removed from the original sentence and a syntactically- or
semantically-incorrect sentence is generated, but the translation
system still returns the removed word translation for the gener-
ated sentence. Examples are illustrated in Table. 8.

These false positives can be further reduced to make our ap-
proaches more efficient. For example, syntactically incorrect sen-
tences can be eliminated by using a good grammar checker. To
eliminate cases of semantically incorrect sentences, we can train a
corresponding classifier. We note that there were also some false
negatives produced in “filtering by sentence embeddings” step of
PatInv-Replace, which are shown in Table 9.

4.4 Errors Reported by Different Approaches

In this section, we compare PatInv with SIT and TransRepair in
terms of precision and overlap of erroneous translations found. The
comparison is done with En-Zh language setting because SIT only
provides En-Zh implementation.

Precision. First, we compare the precision of PatInv with SIT
[30] and TransRepair [69] because precision is used as a core eval-
uation metric in both papers. The results are presented in Table 10.
PatInv-Remove achieves comparable precision compared with ex-
isting approaches. When the threshold for filtering by sentence
semantics is 1.0 (i.e., no filtering in this step), PatInv-Replace ob-
tains more erroneous issues with slightly lower precision. When
we decrease the threshold (more generated sentences are filtered
out), the precision of PatInv-Replace will increase accordingly. For
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Table 10: Precision and the number of erroneous issues using different threshold values (En-Zh)

100 OI.’9a 9tInv-Rep lg.cge 5 090 PatInv-Remove SIT TransRepair
Google-Politics | 57.9% (92) 68.5% (61) 72.2% (13)  75.0% (3) 42.9% (6) 65.3% (34) | 64.2% (45)
Google-Business | 62.5% (90) 70.0% (56) 67.4% (31)  76.7% (23) 76.9% (10) 64.7% (33) | 61.1% (22)
Bing-Politics | 53.1% (92) 60.0% (63) 61.1% (22)  66.7% (6) 61.5% (16) | 70.5% (36) | 70.5% (24)
Bing-Business | 55.2% (91) 61.8% (60) 53.5% (23) 65.4% (17) 58.4% (14) 62.7% (32) | 55.0% (22)
SIT SIT The filtering step of PatInv-Replace takes time because of the con-
stituency parser used (8.1 seconds per hundred sentences). The
80 83 translation step takes time because for each sentence in our ex-
periments, we invoke the translators’ API, which include both the
translation time and the network communication. Compared with
12 6 S 5 existing approaches, PatInv-Replace takes more time because Pat-
4 Inv-Replace generates much more sentences (i.e., 31,766 for Pat-
195 2 62 200 3 44 Inv-Replace, 4,025 for SIT, and 405 for TransRepair) and thus Pat-
Inv-Replace needs to run the constituency parser and the transla-
tor’s API much more times, leading to longer running time. How-
Patinv TransRepair Patinv TransRepair ever, we believe Patlnv is efficient for practical usage because it

Google Translate Bing Microsoft Translator
Figure 3: Erroneous Translations reported by PatInv, SIT
and TransRepair (En-Zh)

example, when the threshold is 0.99, PatInv-Replace finds more er-
roneous issues with comparable precision. Thus, consider the per-
formance of PatInv-Replace and PatInv-Remove, the effectiveness
of PatInv on accurately finding erroneous translations is compara-
ble to the state-of-the-art approaches.

Overlap of erroneous translations. Fig. 3 presents the over-
lap of the erroneous translations reported by PatInv, SIT and Tran-
sRepair. This Venn diagram shows that most of the erroneous trans-
lations reported by PatInv cannot be found by existing approaches.
Specifically, only 8.4% (18/213) and 8.2% (18/218) erroneous trans-
lations reported by PatInv can be found by either of the existing
approaches. Thus, we believe PatInv complements with SIT and
TransRepair.

4.5 Running Time of Our Approach

In this section, we present the running time of PatInv. For each
experimental setting, we run PatInv 10 times and report the aver-
age timing. Results are shown in Table 11. Note that the running
time of PatInv-Replace’s “filtering by sentence embeddings” step
is not counted in the total time of PatInv-Replace because it is an
optional step. Compared with other steps, this optional step is rel-
atively time-consuming. For example, our implementation takes
around 27 seconds for calculating the similarity of one sentence
pair due to expensive API calls.

As we can observe from Table 11, most of the time is consumed
in the filtering step and the translation step for PatInv-Replace.
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is designed to be an offline approach. Moreover, with this longer
running time, PatInv-Replace has reported more erroneous trans-
lations (in Table 10). PatInv-Remove and TransRepair are much
faster because they generate much less sentences (Table 4).

4.6 Fine-Tuning with Errors Reported by
PatInv

In this section, we explore whether the reported erroneous trans-
lations can be utilized as a fine-tuning set for the NMT model to
quickly fix translation errors. Fine-tuning is a common practice in
NMT [18, 68]. It is often used when developers intend to adapt a
trained NMT model to a new domain of data (e.g., from text on “pol-
itics” to text on “business”). To simulate this situation, we train a
transformer network with global attention [74] on the WMT 18 Zh-
En (Chinese-to-English) corpus [11], which contains ~ 20M sen-
tence pairs. We use the fairseq framework [1] to create the model.
We note that transformers are currently the state-of-the-art mod-
els for NMT. We reverse the original direction of translation so that
we can properly compare with our experiments on the Google and
Bing translation systems.

We test this model with PatInv-Replace using the Politics dataset
in Table 2. PatInv-Replace successfully finds 26 erroneous transla-
tions. We manually label them with correct translations and use
them as the dataset to fine-tune our NMT model. Specifically, we
train the model for another 6 epochs with only the fixed transla-
tions. As the dataset was small, training took < 10 mins. After
this fine-tuning, all the 26 erroneous translations are fixed. Mean-
while, the BLEU score on a held out test set remains the same.
Thus, the erroneous translations reported by PatInv can be used to
improve the robustness of machine translation software. Note that
although error fixing for machine translation is an interesting and
important topic, it is not the focus of this paper. Thus, we regard it
as a promising future direction.
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Table 11: Running time of PatInv

Shashij Gupta, Pinjia He, Clara Meister, and Zhendong Su

Google  Google Google  Google Bing Bing Bing Bing
Politics  Business  Politics  Business Politics  Business Politics  Business
Hindi Hindi Chinese  Chinese Hindi Hindi Chinese  Chinese
Initialization o | 29.62 29.44 27.49 27.58 29.62 29.44 27.49 27.58
Pair Generation E 129.94 120.92 129.94 120.92 129.94 120.92 129.94 120.92
Filtering E 2231.55 2313.04 2231.55 2313.04 2231.55 2313.04 2231.55 2313.04
Translation lé 1600.47 1726.74 2530.22 2735.07 1775.17 1915.8 3068.59 3310.73
Detection (TJG 0.002 0.0022 0.0019 0.0023 0.0017 0.0025 0.0019 0.0022
Total A1 3991.29 4190.14 4919.2 5196.61 4166.29 4379.2 5457.57 5772.27
Initialization © 3.03 3.06 3.03 3.06 3.03 3.06 3.03 3.06
Pair Generation g 15.20 16.14 15.20 16.14 15.20 16.14 15.20 16.14
Filtering &J 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002
Translation 5 | 220.78 228.95 246.15 252.98 344.34 360.11 425.14 435.76
Detection g 0.0019 0.002 0.0019 0.0022 0.0023 0.0021 0.0018 0.0021
Total A~ | 239.01 248.15 264.38 272.18 362.57 379.31 443.37 454.96
SIT NA NA 1360.91 1285.73 NA NA 2303.93 2214.46
TransRepair NA NA 18.37 15.11 NA NA 69.92 66.01

5 RELATED WORK
5.1 Robust Al Software

Throughout recent years, there has been much work and develop-
ment in the area of artificial intelligence (AI). Al is used every-
where today, such as in autonomous cars and face recognition.
However, modern Al models are not as robust as we might hope.
In particular, they can return incorrect results (e.g., wrong clas-
sification labels) that lead to fatal accidents [37, 39, 92]. Recent
research has reported a variety of adversarial examples that can
fool Al software, such as autonomous cars [8, 21, 27, 83], 3D object
classifiers [80, 82], and speech recognition services [12, 22]. To pro-
mote robustness, lines of research have focused on testing, [23, 26,
31, 36, 44, 59, 62, 72, 79, 85, 86], debugging [45], detecting adver-
sarial examples [46, 70, 75, 81], or training networks in a robust
way [35, 42, 48, 57]. However, none of these papers explore ma-
chine translation, which is the main focus of our paper.

5.2 Robust NLP Systems

The recent advances in the robustness of computer vision systems
have encouraged researchers to investigate the robustness of NLP
systems performing tasks such as sentiment analysis 7, 32, 40, 63],
textual entailment [32] and toxic content detection [40]. However,
all of these studies work on classification problems which have a
much smaller output space than machine translation. Robustness
of more complex NLP system has also been explored in a a few
recent studies. In particular, Jia and Liang [34] proposed an ad-
versarial evaluation scheme for the Stanford Question Answering
Dataset (SQuAD), which has been widely used for the evaluation
of reading comprehension systems. They found that appending a
specially designed sentence to the paragraph can mislead the well-
trained reading comprehension systems. Additionally, Mudrakarta
et al. [52] successfully attacked question answering models. In par-
ticular, they leverage the finding that deep networks often ignore
important question terms and thus they perturb the questions ac-
cordingly. Compared with machine translation, these systems are
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easier to verify because the ground truth is unique. For example,
the output of reading comprehension could be a specific person
name. For the task of translation, there could be multiple correct
translations for a given sentence, which makes detecting incorrect
outputs incredibly nuanced.

5.3 Robust Machine Translation

Machine translation strives to translate text in a source language
to text in a target language automatically. There are primarily two
lines of work on the robustness of machine translation software: (1)
adversarial machine learning and (2) machine translation testing.

Adversarial machine learning aims at fooling machine transla-
tion models with adversarial examples. Most of the existing tech-
niques generate such examples by white-box methods [14, 50, 87],
in which complete knowledge of network structure and parame-
ters of the machine translation model is available. Unlike them, Pat-
Inv takes a black-box approach. Existing black-box techniques [9,
24, 33] perturb or paraphrase sentences that can easily lead to
invalid sentences (e.g., syntactic or semantic errors). In compari-
son, this paper aims at generating syntactically- and semantically-
correct test cases (i.e., source sentences).

Machine translation testing aims at finding syntactically- and
semantically-correct sentences that trigger translation errors. [76,
89] proposed two specialized methods to detect two kinds of trans-
lation errors respectively (under-translation and over-translation).
In contrast, PatInv is a general methodology that targets general
translation errors. He et al. [30] and Sun et al. [69] developed meta-
morphic testing techniques for general translation errors based on
the assumption that similar sentences should have similar trans-
lations (evaluated by sentence structures [30] or existing distance
metrics [69]). Sun et al. [69] also further proposed an automated
repair approach. PatInv complements these approaches because it
is based on a brand new concept named pathological invariance:
sentences of different meanings should not have the same transla-
tion. Our evaluation has also shown that PatInv can report many



Machine Translation Testing via Pathological Invariance

erroneous translations that the state-of-the-art approaches [30, 69]
cannot report. Thus, we believe PatInv can complement these ap-
proaches. In addition, all existing works were evaluated by one lan-
guage setting (En-Zh), while PatInv is evaluated by two language
settings (En-Hi and En-Zh).

5.4 Metamorphic Testing

Metamorphic testing techniques find software bugs by detecting
the violation of necessary functionalities (i.e., metamorphic rela-
tions) of software under test [15, 16, 67]. As an effective approach
for addressing the test oracle and test case generation problems,
metamorphic testing has been adopted in the testing phase of a
variety of software systems, such as compilers [38, 41], scientific
libraries [84], and database systems [43]. In addition, metamorphic
testing has also been used in Al software testing because of its abil-
ity to test “non-testable” programmings, such as statistical classi-
fiers [53, 78], search engines [90], and autonomous cars [72, 86].
PatlInv is a novel metamorphic testing approach for machine trans-
lation software.

6 CONCLUSION

In this paper, we present Patlnv, a novel, effective, and widely
applicable methodology for finding translation errors in machine
translation systems. In contrast to existing approaches that rely on
invariances between translations (e.g., structural invariance [30]),
PatlInv is based on pathological invariance: sentences of different
meanings have identical translation. Because of this significant con-
ceptual difference, our implementations of Patlnv have reported
many erroneous translations that cannot be found by existing ap-
proaches. In our evaluation, PatInv successfully finds 100 erroneous
translations for En-Hi and 431 erroneous translations for En-Zh
respectively in Google Translate and Bing Microsoft Translator. In
particular, among the errors reported for En-Zh, 395 out of 431 are
unique to PatInv. In addition, PatInv performs accurately and is es-
pecially effective in finding word/phrase mistranslation errors and
under-translation errors. Thus, PatInv complements with existing
approaches. In the future, we will provide more implementations
on top of PatInv’s core idea, for example, generating new sentences
by inserting words to detect over-translation errors. We will also
apply the general idea to validate other text generation tasks, such
as speech recognition and code summarization.
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